{"title":"Evaluation of Methanolic Leaf Extract of Parkia biglobosa (African locust bean, Jacg, Benth) Leaves against Trypanosoma evansi","authors":"P. Shaba, N. P. Kurade, V. Bhanupraksah, R. Singh","doi":"10.9734/bpi/tipr/v10/7218d-2","DOIUrl":null,"url":null,"abstract":"In our ongoing research to determine the presence of antitrypanosomal compound(s) from medicinal plant, leaves of Parkia biglobosa were extracted with methanolic solvent at concentrations (250-1000 µg ml-1). Methanolic plant extract (MPE) obtained was tested against Trypanosoma evansi for trypanocidal activity. This was performed on Vero cells grown in Dulbecco's Modified Eagle Medium (DMEM) and supplemented with foetal calf serum (FCS) 20-40% at appropriate conditions. In vitro cytotoxicity test of P. biglobosa methanolic leaf extract at concentrations (1.56-100 µg ml-1) was done on Vero cells but without FCS. In vitro trypanocidal activity varied from immobilization, reduction and to the killing of trypanosomes in corresponding ELISA plate wells. At 250 µg ml-1of MPE of P. biglobosa, there was drastic reduction of average mean trypanosomes count in the extract (40.±0.0 to 7.000±0.33) as observed. At 500 µg ml-1 of the test extract of P. biglobosa, there was complete killing of trypanosomes (40.±0.0 to 0.00±0.00) at 9 h of incubation, which was statistically the same as diminazine aceturate (50 µg ml-1) at 4 h. Trypanosomes counts decreased in concentration and time –dependent manner with significant difference (P \\(\\le\\) 0.05 to 0. 01)). MPE of P, biglobosa and diminazine aceturate, standard drug, were cytotoxic to Vero cells except at concentrations of 12.5- 1.56 µg ml-1. Alkaloids, flavonoids, anthraquinones, tannins, phlobotannins and cardiac glycoside already isolated from P. biglobosa leaves and other parts of it could be responsible for higher antitrypanosmal activity.","PeriodicalId":22326,"journal":{"name":"Technological Innovation in Pharmaceutical Research Vol. 10","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Innovation in Pharmaceutical Research Vol. 10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/tipr/v10/7218d-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In our ongoing research to determine the presence of antitrypanosomal compound(s) from medicinal plant, leaves of Parkia biglobosa were extracted with methanolic solvent at concentrations (250-1000 µg ml-1). Methanolic plant extract (MPE) obtained was tested against Trypanosoma evansi for trypanocidal activity. This was performed on Vero cells grown in Dulbecco's Modified Eagle Medium (DMEM) and supplemented with foetal calf serum (FCS) 20-40% at appropriate conditions. In vitro cytotoxicity test of P. biglobosa methanolic leaf extract at concentrations (1.56-100 µg ml-1) was done on Vero cells but without FCS. In vitro trypanocidal activity varied from immobilization, reduction and to the killing of trypanosomes in corresponding ELISA plate wells. At 250 µg ml-1of MPE of P. biglobosa, there was drastic reduction of average mean trypanosomes count in the extract (40.±0.0 to 7.000±0.33) as observed. At 500 µg ml-1 of the test extract of P. biglobosa, there was complete killing of trypanosomes (40.±0.0 to 0.00±0.00) at 9 h of incubation, which was statistically the same as diminazine aceturate (50 µg ml-1) at 4 h. Trypanosomes counts decreased in concentration and time –dependent manner with significant difference (P \(\le\) 0.05 to 0. 01)). MPE of P, biglobosa and diminazine aceturate, standard drug, were cytotoxic to Vero cells except at concentrations of 12.5- 1.56 µg ml-1. Alkaloids, flavonoids, anthraquinones, tannins, phlobotannins and cardiac glycoside already isolated from P. biglobosa leaves and other parts of it could be responsible for higher antitrypanosmal activity.
在我们正在进行的研究中,以确定药用植物中抗锥虫化合物的存在,用甲醇溶剂(250-1000µg ml-1)提取了大叶Parkia biglobosa的叶子。研究了甲醇植物提取物(MPE)对伊文氏锥虫的杀虫活性。这是在Dulbecco's Modified Eagle培养基(DMEM)中生长的Vero细胞上进行的,并添加了胎牛血清(FCS) 20-40% at appropriate conditions. In vitro cytotoxicity test of P. biglobosa methanolic leaf extract at concentrations (1.56-100 µg ml-1) was done on Vero cells but without FCS. In vitro trypanocidal activity varied from immobilization, reduction and to the killing of trypanosomes in corresponding ELISA plate wells. At 250 µg ml-1of MPE of P. biglobosa, there was drastic reduction of average mean trypanosomes count in the extract (40.±0.0 to 7.000±0.33) as observed. At 500 µg ml-1 of the test extract of P. biglobosa, there was complete killing of trypanosomes (40.±0.0 to 0.00±0.00) at 9 h of incubation, which was statistically the same as diminazine aceturate (50 µg ml-1) at 4 h. Trypanosomes counts decreased in concentration and time –dependent manner with significant difference (P \(\le\) 0.05 to 0. 01)). MPE of P, biglobosa and diminazine aceturate, standard drug, were cytotoxic to Vero cells except at concentrations of 12.5- 1.56 µg ml-1. Alkaloids, flavonoids, anthraquinones, tannins, phlobotannins and cardiac glycoside already isolated from P. biglobosa leaves and other parts of it could be responsible for higher antitrypanosmal activity.