On subgraphs of C2k-free graphs and a problem of Kühn and Osthus

Dániel Grósz, Abhishek Methuku, C. Tompkins
{"title":"On subgraphs of C2k-free graphs and a problem of Kühn and Osthus","authors":"Dániel Grósz, Abhishek Methuku, C. Tompkins","doi":"10.1017/S0963548319000452","DOIUrl":null,"url":null,"abstract":"Abstract Let c denote the largest constant such that every C6-free graph G contains a bipartite and C4-free subgraph having a fraction c of edges of G. Győri, Kensell and Tompkins showed that 3/8 ⩽ c ⩽ 2/5. We prove that c = 38. More generally, we show that for any ε > 0, and any integer k ⩾ 2, there is a C2k-free graph \n\n$G'$\n\n which does not contain a bipartite subgraph of girth greater than 2k with more than a fraction \n$$\\Bigl(1-\\frac{1}{2^{2k-2}}\\Bigr)\\frac{2}{2k-1}(1+\\varepsilon)$$\n of the edges of \n\n$G'$\n\n. There also exists a C2k-free graph \n\n$G''$\n\n which does not contain a bipartite and C4-free subgraph with more than a fraction \n$$\\Bigl(1-\\frac{1}{2^{k-1}}\\Bigr)\\frac{1}{k-1}(1+\\varepsilon)$$\n of the edges of \n\n$G''$\n\n. One of our proofs uses the following statement, which we prove using probabilistic ideas, generalizing a theorem of Erdős. For any ε > 0, and any integers a, b, k ⩾ 2, there exists an a-uniform hypergraph H of girth greater than k which does not contain any b-colourable subhypergraph with more than a fraction \n$$\\Bigl(1-\\frac{1}{b^{a-1}}\\Bigr)(1+\\varepsilon)$$\n of the hyperedges of H. We also prove further generalizations of this theorem. In addition, we give a new and very short proof of a result of Kühn and Osthus, which states that every bipartite C2k-free graph G contains a C4-free subgraph with at least a fraction 1/(k−1) of the edges of G. We also answer a question of Kühn and Osthus about C2k-free graphs obtained by pasting together C2l’s (with k >l ⩾ 3).","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let c denote the largest constant such that every C6-free graph G contains a bipartite and C4-free subgraph having a fraction c of edges of G. Győri, Kensell and Tompkins showed that 3/8 ⩽ c ⩽ 2/5. We prove that c = 38. More generally, we show that for any ε > 0, and any integer k ⩾ 2, there is a C2k-free graph $G'$ which does not contain a bipartite subgraph of girth greater than 2k with more than a fraction $$\Bigl(1-\frac{1}{2^{2k-2}}\Bigr)\frac{2}{2k-1}(1+\varepsilon)$$ of the edges of $G'$ . There also exists a C2k-free graph $G''$ which does not contain a bipartite and C4-free subgraph with more than a fraction $$\Bigl(1-\frac{1}{2^{k-1}}\Bigr)\frac{1}{k-1}(1+\varepsilon)$$ of the edges of $G''$ . One of our proofs uses the following statement, which we prove using probabilistic ideas, generalizing a theorem of Erdős. For any ε > 0, and any integers a, b, k ⩾ 2, there exists an a-uniform hypergraph H of girth greater than k which does not contain any b-colourable subhypergraph with more than a fraction $$\Bigl(1-\frac{1}{b^{a-1}}\Bigr)(1+\varepsilon)$$ of the hyperedges of H. We also prove further generalizations of this theorem. In addition, we give a new and very short proof of a result of Kühn and Osthus, which states that every bipartite C2k-free graph G contains a C4-free subgraph with at least a fraction 1/(k−1) of the edges of G. We also answer a question of Kühn and Osthus about C2k-free graphs obtained by pasting together C2l’s (with k >l ⩾ 3).
无c2k图的子图及k hn和Osthus问题
摘要:设c为最大常数,使得每一个无c6的图G包含一个二部无c4的子图,其边数为G的分数c。Győri, Kensell和Tompkins证明了3/8≤c≤2/5。我们证明c = 38。更一般地说,我们表明,对于任何ε > 0和任何整数k大于或等于2,存在一个无c2k图$G'$,它不包含周长大于2k的二部子图,且其周长大于$G'$的边的一个分数$$\Bigl(1-\frac{1}{2^{2k-2}}\Bigr)\frac{2}{2k-1}(1+\varepsilon)$$。也存在一个无c2k的图$G''$,它不包含一个二部且无c2k的子图,其边数大于$G''$的一个分数$$\Bigl(1-\frac{1}{2^{k-1}}\Bigr)\frac{1}{k-1}(1+\varepsilon)$$。我们的一个证明使用了下面的陈述,我们用概率思想来证明它,推广了Erdős的定理。对于任何ε > 0,和任何整数a, b, k小于2,存在一个周长大于k的a-一致超图H,它不包含任何b-可着色的子超图,其超过H的超边的一个分数$$\Bigl(1-\frac{1}{b^{a-1}}\Bigr)(1+\varepsilon)$$。我们还证明了该定理的进一步推广。此外,我们给出了k hn和Osthus结果的一个新的和非常简短的证明,该证明表明每个二部C2k-free图G包含一个具有G的至少1/(k−1)条边的C4-free子图。我们还回答了k hn和Osthus关于通过粘贴在一起的C2l(与k >l大于或等于3)获得的C2k-free图的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信