{"title":"Optimizing network microsegmentation policy for cyber resilience","authors":"S. Noel, Vipin Swarup, K. Johnsgard","doi":"10.1177/15485129211051386","DOIUrl":null,"url":null,"abstract":"This paper describes an approach for improving cyber resilience through the synthesis of optimal microsegmentation policy for a network. By leveraging microsegmentation security architecture, we can reason about fine-grained policy rules that enforce access for given combinations of source address, destination address, destination port, and protocol. Our approach determines microsegmentation policy rules that limit adversarial movement within a network according to assumed attack scenarios and mission availability needs. For this problem, we formulate a novel optimization objective function that balances cyberattack risks against accessibility to critical network resources. Given the application of a particular set of policy rules as a candidate optimal solution, this objective function estimates the adversary effort for carrying out a particular attack scenario, which it balances against the extent to which the solution restricts access to mission-critical services. We then apply artificial intelligence techniques (evolutionary programming) to learn microsegmentation policy rules that optimize this objective function.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":"47 1","pages":"57 - 79"},"PeriodicalIF":1.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211051386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes an approach for improving cyber resilience through the synthesis of optimal microsegmentation policy for a network. By leveraging microsegmentation security architecture, we can reason about fine-grained policy rules that enforce access for given combinations of source address, destination address, destination port, and protocol. Our approach determines microsegmentation policy rules that limit adversarial movement within a network according to assumed attack scenarios and mission availability needs. For this problem, we formulate a novel optimization objective function that balances cyberattack risks against accessibility to critical network resources. Given the application of a particular set of policy rules as a candidate optimal solution, this objective function estimates the adversary effort for carrying out a particular attack scenario, which it balances against the extent to which the solution restricts access to mission-critical services. We then apply artificial intelligence techniques (evolutionary programming) to learn microsegmentation policy rules that optimize this objective function.