Object-based affordances detection with Convolutional Neural Networks and dense Conditional Random Fields

Anh Nguyen, D. Kanoulas, D. Caldwell, N. Tsagarakis
{"title":"Object-based affordances detection with Convolutional Neural Networks and dense Conditional Random Fields","authors":"Anh Nguyen, D. Kanoulas, D. Caldwell, N. Tsagarakis","doi":"10.1109/IROS.2017.8206484","DOIUrl":null,"url":null,"abstract":"We present a new method to detect object affordances in real-world scenes using deep Convolutional Neural Networks (CNN), an object detector and dense Conditional Random Fields (CRF). Our system first trains an object detector to generate bounding box candidates from the images. A deep CNN is then used to learn the depth features from these bounding boxes. Finally, these feature maps are post-processed with dense CRF to improve the prediction along class boundaries. The experimental results on our new challenging dataset show that the proposed approach outperforms recent state-of-the-art methods by a substantial margin. Furthermore, from the detected affordances we introduce a grasping method that is robust to noisy data. We demonstrate the effectiveness of our framework on the full-size humanoid robot WALK-MAN using different objects in real-world scenarios.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"11 1","pages":"5908-5915"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

Abstract

We present a new method to detect object affordances in real-world scenes using deep Convolutional Neural Networks (CNN), an object detector and dense Conditional Random Fields (CRF). Our system first trains an object detector to generate bounding box candidates from the images. A deep CNN is then used to learn the depth features from these bounding boxes. Finally, these feature maps are post-processed with dense CRF to improve the prediction along class boundaries. The experimental results on our new challenging dataset show that the proposed approach outperforms recent state-of-the-art methods by a substantial margin. Furthermore, from the detected affordances we introduce a grasping method that is robust to noisy data. We demonstrate the effectiveness of our framework on the full-size humanoid robot WALK-MAN using different objects in real-world scenarios.
基于卷积神经网络和密集条件随机场的对象启示检测
我们提出了一种使用深度卷积神经网络(CNN)、对象检测器和密集条件随机场(CRF)来检测现实场景中对象的可视性的新方法。我们的系统首先训练一个物体检测器从图像中生成候选边界框。然后使用深度CNN从这些边界框中学习深度特征。最后,使用密集CRF对这些特征映射进行后处理,以改进沿类边界的预测。在我们新的具有挑战性的数据集上的实验结果表明,所提出的方法在很大程度上优于最近最先进的方法。此外,根据检测到的启示,我们引入了一种对噪声数据具有鲁棒性的抓取方法。我们在真实场景中使用不同的物体在全尺寸人形机器人WALK-MAN上展示了我们的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信