Detecting 3D geometric boundaries of indoor scenes under varying lighting

Jie Ni, Tim K. Marks, Oncel Tuzel, F. Porikli
{"title":"Detecting 3D geometric boundaries of indoor scenes under varying lighting","authors":"Jie Ni, Tim K. Marks, Oncel Tuzel, F. Porikli","doi":"10.1109/WACV.2014.6836125","DOIUrl":null,"url":null,"abstract":"The goal of this research is to identify 3D geometric boundaries in a set of 2D photographs of a static indoor scene under unknown, changing lighting conditions. A 3D geometric boundary is a contour located at a 3D depth discontinuity or a discontinuity in the surface normal. These boundaries can be used effectively for reasoning about the 3D layout of a scene. To distinguish 3D geometric boundaries from 2D texture edges, we analyze the illumination subspace of local appearance at each image location. In indoor time-lapse photography and surveillance video, we frequently see images that are lit by unknown combinations of uncalibrated light sources. We introduce an algorithm for semi-binary nonnegative matrix factorization (SBNMF) to decompose such images into a set of lighting basis images, each of which shows the scene lit by a single light source. These basis images provide a natural, succinct representation of the scene, enabling tasks such as scene editing (e.g., relighting) and shadow edge identification.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"34 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of this research is to identify 3D geometric boundaries in a set of 2D photographs of a static indoor scene under unknown, changing lighting conditions. A 3D geometric boundary is a contour located at a 3D depth discontinuity or a discontinuity in the surface normal. These boundaries can be used effectively for reasoning about the 3D layout of a scene. To distinguish 3D geometric boundaries from 2D texture edges, we analyze the illumination subspace of local appearance at each image location. In indoor time-lapse photography and surveillance video, we frequently see images that are lit by unknown combinations of uncalibrated light sources. We introduce an algorithm for semi-binary nonnegative matrix factorization (SBNMF) to decompose such images into a set of lighting basis images, each of which shows the scene lit by a single light source. These basis images provide a natural, succinct representation of the scene, enabling tasks such as scene editing (e.g., relighting) and shadow edge identification.
检测室内场景在不同光照条件下的三维几何边界
本研究的目标是在未知的、不断变化的照明条件下,在一组静态室内场景的二维照片中识别出三维几何边界。三维几何边界是位于三维深度不连续或表面法线不连续处的轮廓。这些边界可以有效地用于推理场景的3D布局。为了区分三维几何边界和二维纹理边缘,我们分析了每个图像位置的局部外观的照明子空间。在室内延时摄影和监控视频中,我们经常看到由未校准光源的未知组合照亮的图像。我们引入了一种半二进制非负矩阵分解(SBNMF)算法,将这些图像分解为一组照明基础图像,每个图像显示单个光源照亮的场景。这些基础图像提供了一个自然、简洁的场景表示,支持场景编辑(例如,重新照明)和阴影边缘识别等任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信