Analysis and Categorization of Traffic Streams by Artificial Intelligence

I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev
{"title":"Analysis and Categorization of Traffic Streams by Artificial Intelligence","authors":"I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev","doi":"10.1109/BIA48344.2019.8967475","DOIUrl":null,"url":null,"abstract":"This report presents an evaluation of artificial neural networks in terms of computational efficiency, by analyzing transmitted information flows for determination the type of defined traffic categories using artificial intelligence. The subject of study are Markov M/M/c circuits with unlimited number of waiting calls in the queue and fixed number of server stations in accordance with the desired test categories, as follows c=5, c=10 and c=15. Three layer architectures are applied to different types of neural output activators with Levenberg-Marquardt training, respectively linear, tangent-sigmoidal and logarithmic-sigmoidal. The lowest values of the Mean Squared Error (MSE) of 0.0080, 0.0041, and 0.1923 are experimentally established at 7, 3, and 25 hidden neurons for the indicated activation functions. An accuracy levels of 94.4%, 100.0%, and 70.6% were obtained against indicator levels for identical numbers of neurons.","PeriodicalId":6688,"journal":{"name":"2019 International Conference on Biomedical Innovations and Applications (BIA)","volume":"171 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biomedical Innovations and Applications (BIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA48344.2019.8967475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This report presents an evaluation of artificial neural networks in terms of computational efficiency, by analyzing transmitted information flows for determination the type of defined traffic categories using artificial intelligence. The subject of study are Markov M/M/c circuits with unlimited number of waiting calls in the queue and fixed number of server stations in accordance with the desired test categories, as follows c=5, c=10 and c=15. Three layer architectures are applied to different types of neural output activators with Levenberg-Marquardt training, respectively linear, tangent-sigmoidal and logarithmic-sigmoidal. The lowest values of the Mean Squared Error (MSE) of 0.0080, 0.0041, and 0.1923 are experimentally established at 7, 3, and 25 hidden neurons for the indicated activation functions. An accuracy levels of 94.4%, 100.0%, and 70.6% were obtained against indicator levels for identical numbers of neurons.
基于人工智能的交通流分析与分类
本报告通过分析传输的信息流来确定使用人工智能定义的流量类别的类型,从计算效率方面对人工神经网络进行了评估。本文研究的对象是Markov M/M/c电路,队列中等待呼叫数不限,服务站数固定,按照期望的测试类别,c=5, c=10, c=15。通过Levenberg-Marquardt训练,将三层结构应用于不同类型的神经输出激活器,分别为线性、切线-s型和对数-s型。分别在7、3和25个隐藏神经元上建立了最小的均方误差(MSE),分别为0.0080、0.0041和0.1923。对于相同数量的神经元,准确度分别为94.4%、100.0%和70.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信