{"title":"Predicting smart cities' electricity demands using k-means clustering algorithm in smart grid","authors":"Shurui Wang, Aifeng Song, Yufeng Qian","doi":"10.2298/csis220807013w","DOIUrl":null,"url":null,"abstract":"This work aims to perform the unified management of various departments engaged in smart city construction by big data, establish a synthetic data collection and sharing system, and provide fast and convenient big data services for smart applications in various fields. A new electricity demand prediction model based on back propagation neural network (BPNN) is proposed for China?s electricity industry according to the smart city?s big data characteristics. This model integrates meteorological, geographic, demographic, corporate, and economic information to form a big intelligent database. Moreover, the K-means clustering algorithm mines and analyzes the data to optimize the power consumers? information. The BPNN model is used to extract features for prediction. Users with weak daily correlation obtained by the K-means clustering algorithm only input the historical load of adjacent moments into the BPNN model for prediction. Finally, the electricity market is evaluated by exploring the data correlation in-depth to verify the proposed model?s effectiveness. The results indicate that the K-mean algorithm can significantly improve the segmentation accuracy of power consumers, with a maximum accuracy of 85.25% and average accuracy of 83.72%. The electricity consumption of different regions is separated, and the electricity consumption is classified. The electricity demand prediction model can enhance prediction accuracy, with an average error rate of 3.27%. The model?s training significantly speeds up by adding the momentum factor, and the average error rate is 2.13%. Therefore, the electricity demand prediction model achieves high accuracy and training efficiency. The findings can provide a theoretical and practical foundation for electricity demand prediction, personalized marketing, and the development planning of the power industry.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"34 1","pages":"657-678"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis220807013w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to perform the unified management of various departments engaged in smart city construction by big data, establish a synthetic data collection and sharing system, and provide fast and convenient big data services for smart applications in various fields. A new electricity demand prediction model based on back propagation neural network (BPNN) is proposed for China?s electricity industry according to the smart city?s big data characteristics. This model integrates meteorological, geographic, demographic, corporate, and economic information to form a big intelligent database. Moreover, the K-means clustering algorithm mines and analyzes the data to optimize the power consumers? information. The BPNN model is used to extract features for prediction. Users with weak daily correlation obtained by the K-means clustering algorithm only input the historical load of adjacent moments into the BPNN model for prediction. Finally, the electricity market is evaluated by exploring the data correlation in-depth to verify the proposed model?s effectiveness. The results indicate that the K-mean algorithm can significantly improve the segmentation accuracy of power consumers, with a maximum accuracy of 85.25% and average accuracy of 83.72%. The electricity consumption of different regions is separated, and the electricity consumption is classified. The electricity demand prediction model can enhance prediction accuracy, with an average error rate of 3.27%. The model?s training significantly speeds up by adding the momentum factor, and the average error rate is 2.13%. Therefore, the electricity demand prediction model achieves high accuracy and training efficiency. The findings can provide a theoretical and practical foundation for electricity demand prediction, personalized marketing, and the development planning of the power industry.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.