Ly Duc Minh, Nguyen Quang Sang, Petr Bilik, Radek Martinek
{"title":"Optimized Design of Source Energy for Manufacturing Machine by Digital Numerical Control","authors":"Ly Duc Minh, Nguyen Quang Sang, Petr Bilik, Radek Martinek","doi":"10.15282/ijame.20.1.2023.12.0797","DOIUrl":null,"url":null,"abstract":"The quality of the power supplied to the machining center is a key factor in determining the accuracy of the machine’s operation. The precision of the machining center is to ensure that the spindle accuracy is less than 3 microns. This study proposes a digital numerical control system to control the quality of the power supply and control the accuracy of the spindle axis of the machining center to monitor the measurement results in real time. The computer vision system is set up according to the artificial intelligent (AI) technique to recognize human face objects and control the position of the processor respectively on each line. The online measurement system follows the digital numerical control (DNC) system applied at each processing line, measuring product dimensions, measuring conditions for setting up machining tools, and measuring machine coordinates. The system operates fully automatically, eliminating dependence on operator skill, and facilitating operation in control of machining conditions. Improve machining center operator satisfaction. After implementation of the improvement options, total cost down 1.740 USD per year, the monthly repair cost due to broken drill, spindle alignment decreased from $5000 to $3,300 per month. The scrap rate related to the hole size decreased from 0.47% to 0.23% (cost down $35 per month). Downtime for repair reduced from 20 hours per month to 7.5 hours per month (cost down $10 per month). Broken drill rate was reduced from 0.20% to 0.06% (cost down $100 per month).","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"54 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.1.2023.12.0797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
The quality of the power supplied to the machining center is a key factor in determining the accuracy of the machine’s operation. The precision of the machining center is to ensure that the spindle accuracy is less than 3 microns. This study proposes a digital numerical control system to control the quality of the power supply and control the accuracy of the spindle axis of the machining center to monitor the measurement results in real time. The computer vision system is set up according to the artificial intelligent (AI) technique to recognize human face objects and control the position of the processor respectively on each line. The online measurement system follows the digital numerical control (DNC) system applied at each processing line, measuring product dimensions, measuring conditions for setting up machining tools, and measuring machine coordinates. The system operates fully automatically, eliminating dependence on operator skill, and facilitating operation in control of machining conditions. Improve machining center operator satisfaction. After implementation of the improvement options, total cost down 1.740 USD per year, the monthly repair cost due to broken drill, spindle alignment decreased from $5000 to $3,300 per month. The scrap rate related to the hole size decreased from 0.47% to 0.23% (cost down $35 per month). Downtime for repair reduced from 20 hours per month to 7.5 hours per month (cost down $10 per month). Broken drill rate was reduced from 0.20% to 0.06% (cost down $100 per month).
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.