A 3D FPGA Architecture to Realize Simple Die Stacking

Q4 Engineering
M. Amagasaki, Qian Zhao, M. Iida, M. Kuga, T. Sueyoshi
{"title":"A 3D FPGA Architecture to Realize Simple Die Stacking","authors":"M. Amagasaki, Qian Zhao, M. Iida, M. Kuga, T. Sueyoshi","doi":"10.2197/ipsjtsldm.8.116","DOIUrl":null,"url":null,"abstract":"To balance between cost and performance, and to explore 3D field-programmable gate array (FPGA) with realistic 3D integration processes, we propose spatially distributed and functionally distributed types of 3D FPGA architectures. The functionally distributed architecture consists of two wafers, a logic layer and a routing layer, and is stacked by a face-down process technology. Since vertical wires pass through microbumps, no TSVs are needed. In contrast, the spatially distributed architecture is divided into multiple layers with the same structure, unlike in the functionally distributed type. This architecture can be expanded to more than two layers by stacking multiples of the same die. The goal of this paper is to elucidate the advantages and disadvantages of these two types of 3D FPGAs. According to our evaluation, when only two layers are used, the functionally distributed architecture is more effective. When higher performance is achieved by using more than two layers, the spatially distributed architecture achieves better performance.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":"44 1","pages":"116-122"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.8.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

To balance between cost and performance, and to explore 3D field-programmable gate array (FPGA) with realistic 3D integration processes, we propose spatially distributed and functionally distributed types of 3D FPGA architectures. The functionally distributed architecture consists of two wafers, a logic layer and a routing layer, and is stacked by a face-down process technology. Since vertical wires pass through microbumps, no TSVs are needed. In contrast, the spatially distributed architecture is divided into multiple layers with the same structure, unlike in the functionally distributed type. This architecture can be expanded to more than two layers by stacking multiples of the same die. The goal of this paper is to elucidate the advantages and disadvantages of these two types of 3D FPGAs. According to our evaluation, when only two layers are used, the functionally distributed architecture is more effective. When higher performance is achieved by using more than two layers, the spatially distributed architecture achieves better performance.
一种3D FPGA架构实现简单的芯片堆叠
为了平衡成本和性能,并探索具有现实3D集成过程的3D现场可编程门阵列(FPGA),我们提出了空间分布和功能分布类型的3D FPGA架构。功能分布式架构由逻辑层和路由层两个晶圆组成,并采用面朝下的工艺技术堆叠。由于垂直电线穿过微凸起,所以不需要tsv。而空间分布式的建筑则不同于功能分布式的建筑,它被划分为多层,结构相同。这种架构可以通过堆叠多个相同的骰子扩展到两层以上。本文的目的是阐明这两种类型的三维fpga的优缺点。根据我们的评估,当只使用两层时,功能分布式架构更有效。当使用两层以上的层可以获得更高的性能时,空间分布式架构可以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IPSJ Transactions on System LSI Design Methodology
IPSJ Transactions on System LSI Design Methodology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信