New dimension-theory techniques for constructing infinite-dimensional examples

Leonard R. Rubin, R.M. Schori, John J. Walsh
{"title":"New dimension-theory techniques for constructing infinite-dimensional examples","authors":"Leonard R. Rubin,&nbsp;R.M. Schori,&nbsp;John J. Walsh","doi":"10.1016/0016-660X(79)90031-X","DOIUrl":null,"url":null,"abstract":"<div><p>Dimension theory for separable metric spaces is approached using the concept of essential families (for example, the <em>n</em> pairs of opposite faces of the <em>n</em>-cube). A new theory of essential families is developed and is used to construct examples of infinite-dimensional compacta that contain no closed <em>n</em>-dimensional (<em>n</em> ⩾ 1) subsets; these constructions are conceptually much easier than previous ones. Also, the theory is used to construct easy examples of <em>n</em>-dimensional, totally disconnected spaces.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 1","pages":"Pages 93-102"},"PeriodicalIF":0.0000,"publicationDate":"1979-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90031-X","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X7990031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Dimension theory for separable metric spaces is approached using the concept of essential families (for example, the n pairs of opposite faces of the n-cube). A new theory of essential families is developed and is used to construct examples of infinite-dimensional compacta that contain no closed n-dimensional (n ⩾ 1) subsets; these constructions are conceptually much easier than previous ones. Also, the theory is used to construct easy examples of n-dimensional, totally disconnected spaces.

构建无限维例子的新维理论技术
使用基本族的概念(例如,n-立方体的n对相对面)来接近可分离度量空间的维度理论。开发了一种基本族的新理论,并用于构建不包含封闭n维(n或1)子集的无限维紧集的示例;这些结构在概念上比以前的简单得多。此外,该理论还用于构造n维、完全不连通空间的简单示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信