Inversion Sequences Avoiding a Triple of Patterns of 3 Letters

IF 0.7 4区 数学 Q2 MATHEMATICS
David Callan, Vít Jelínek, T. Mansour
{"title":"Inversion Sequences Avoiding a Triple of Patterns of 3 Letters","authors":"David Callan, Vít Jelínek, T. Mansour","doi":"10.37236/11603","DOIUrl":null,"url":null,"abstract":"An inversion sequence of length $n$ is a sequence of integers $e=e_1\\cdots  e_n$ which satisfies for each $i\\in[n]=\\{1,2,\\ldots,n\\}$ the inequality $0\\le e_i < i$. For a set of patterns $P$, we let $\\mathbf{I}_n(P)$ denote the set of inversion sequences of length $n$ that avoid all the patterns from~$P$. We say that two sets of patterns $P$ and $Q$ are I-Wilf-equivalent if $|\\mathbf{I}_n(P)|=|\\mathbf{I}_n(Q)|$ for every~$n$. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is $137$, $138$ or~$139$. In particular, to show that this number is exactly $137$, it remains to prove $\\{101,102,110\\}\\stackrel{\\mathbf{I}}{\\sim}\\{021,100,101\\}$ and $\\{100,110,201\\}\\stackrel{\\mathbf{I}}{\\sim}\\{100,120,210\\}$.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11603","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

An inversion sequence of length $n$ is a sequence of integers $e=e_1\cdots  e_n$ which satisfies for each $i\in[n]=\{1,2,\ldots,n\}$ the inequality $0\le e_i < i$. For a set of patterns $P$, we let $\mathbf{I}_n(P)$ denote the set of inversion sequences of length $n$ that avoid all the patterns from~$P$. We say that two sets of patterns $P$ and $Q$ are I-Wilf-equivalent if $|\mathbf{I}_n(P)|=|\mathbf{I}_n(Q)|$ for every~$n$. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is $137$, $138$ or~$139$. In particular, to show that this number is exactly $137$, it remains to prove $\{101,102,110\}\stackrel{\mathbf{I}}{\sim}\{021,100,101\}$ and $\{100,110,201\}\stackrel{\mathbf{I}}{\sim}\{100,120,210\}$.
反转序列避免了3个字母的三重模式
长度为$n$的反转序列是一个整数序列$e=e_1\cdots  e_n$,它满足每个$i\in[n]=\{1,2,\ldots,n\}$不等式$0\le e_i < i$。对于一组模式$P$,我们让$\mathbf{I}_n(P)$表示一组长度为$n$的反转序列,这些序列避免了来自$P$的所有模式。我们说,如果$|\mathbf{I}_n(P)|=|\mathbf{I}_n(Q)|$对应每个$n$,那么两组模式$P$和$Q$是等价的。在本文中,我们证明了长度为3模式的三元组中i - will -等价类的个数为$137$, $138$或$139$。特别是,为了证明这个数字确实是$137$,还需要证明$\{101,102,110\}\stackrel{\mathbf{I}}{\sim}\{021,100,101\}$和$\{100,110,201\}\stackrel{\mathbf{I}}{\sim}\{100,120,210\}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信