A finite iterative algorithm for the solution of Sylvester-conjugate matrix equations AV+BW=EV¯F+C and AV+BW¯=EV¯F+C

Mohamed A. Ramadan , Talaat S. El-Danaf , Ahmed M.E. Bayoumi
{"title":"A finite iterative algorithm for the solution of Sylvester-conjugate matrix equations AV+BW=EV¯F+C and AV+BW¯=EV¯F+C","authors":"Mohamed A. Ramadan ,&nbsp;Talaat S. El-Danaf ,&nbsp;Ahmed M.E. Bayoumi","doi":"10.1016/j.mcm.2013.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider two iterative algorithms for the Sylvester-conjugate matrix equation <span><math><mi>A</mi><mi>V</mi><mo>+</mo><mi>B</mi><mi>W</mi><mo>=</mo><mi>E</mi><mover><mrow><mi>V</mi></mrow><mo>¯</mo></mover><mi>F</mi><mo>+</mo><mi>C</mi></math></span> and <span><math><mi>A</mi><mi>V</mi><mo>+</mo><mi>B</mi><mover><mrow><mi>W</mi></mrow><mo>¯</mo></mover><mo>=</mo><mi>E</mi><mover><mrow><mi>V</mi></mrow><mo>¯</mo></mover><mi>F</mi><mo>+</mo><mi>C</mi></math></span>. When these two matrix equations are consistent, for any initial matrices the solutions can be obtained within finite iterative steps in the absence of round off errors. Some lemmas and theorems are stated and proved where the iterative solutions are obtained. Two numerical examples are given to illustrate the effectiveness of the proposed method.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 11","pages":"Pages 1738-1754"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2013.06.010","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895717713002276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we consider two iterative algorithms for the Sylvester-conjugate matrix equation AV+BW=EV¯F+C and AV+BW¯=EV¯F+C. When these two matrix equations are consistent, for any initial matrices the solutions can be obtained within finite iterative steps in the absence of round off errors. Some lemmas and theorems are stated and proved where the iterative solutions are obtained. Two numerical examples are given to illustrate the effectiveness of the proposed method.

sylvester -共轭矩阵方程AV+BW=EV¯F+C和AV+BW¯=EV¯F+C的有限迭代算法
本文研究了求解sylvester -共轭矩阵方程AV+BW=EV¯F+C和AV+BW¯=EV¯F+C的两种迭代算法。当这两个矩阵方程一致时,对于任何初始矩阵,在没有舍入误差的情况下,都可以在有限迭代步内得到解。给出了得到迭代解的引理和定理的证明。最后给出了两个数值算例,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信