Using Federated Learning for Collaborative Intrusion Detection Systems

Matteo Rizzato, Youssef Laarouchi, Christoph Geißler
{"title":"Using Federated Learning for Collaborative Intrusion Detection Systems","authors":"Matteo Rizzato, Youssef Laarouchi, Christoph Geißler","doi":"10.54808/wmsci2023.01.320","DOIUrl":null,"url":null,"abstract":"Neural networks have become cutting edge machine learning models for detecting network attacks. Traditional implementations provide fast and accurate predictions, but require centralised storage of labelled historical data for training. This solution is not always suitable for real-world applications, where regulatory constraints and privacy concerns hamper the collection of sensitive data into a single server. Federated Learning has recently been proposed as a framework for training a centralised model without the need to share data between different providers. We use the CICIDS2017 dataset provided by the Canadian Institute of Cybersecurity to demonstrate the benefits of Neural Networks-based Federated Learning for the detection of the most relevant types of network attacks. We conclude that a federated-trained neural network outperforms locally-trained models (at isoarchitecture) in terms of F1-score and False Negative detection ratio. Further, such model has a minor loss of performance and convergence rapidity compared to a model trained over a hypothetical centralised dataset.","PeriodicalId":30249,"journal":{"name":"Journal of Systemics Cybernetics and Informatics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systemics Cybernetics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54808/wmsci2023.01.320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks have become cutting edge machine learning models for detecting network attacks. Traditional implementations provide fast and accurate predictions, but require centralised storage of labelled historical data for training. This solution is not always suitable for real-world applications, where regulatory constraints and privacy concerns hamper the collection of sensitive data into a single server. Federated Learning has recently been proposed as a framework for training a centralised model without the need to share data between different providers. We use the CICIDS2017 dataset provided by the Canadian Institute of Cybersecurity to demonstrate the benefits of Neural Networks-based Federated Learning for the detection of the most relevant types of network attacks. We conclude that a federated-trained neural network outperforms locally-trained models (at isoarchitecture) in terms of F1-score and False Negative detection ratio. Further, such model has a minor loss of performance and convergence rapidity compared to a model trained over a hypothetical centralised dataset.
在协同入侵检测系统中使用联邦学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
44
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信