Multiplexed 3D Printing of Thermoplastics

IF 1 Q4 ENGINEERING, MANUFACTURING
J. Cleeman, Alex Bogut, Brijesh Mangrolia, Adeline Ripberger, Arad Maghouli, K. Kate, R. Malhotra
{"title":"Multiplexed 3D Printing of Thermoplastics","authors":"J. Cleeman, Alex Bogut, Brijesh Mangrolia, Adeline Ripberger, Arad Maghouli, K. Kate, R. Malhotra","doi":"10.1115/msec2022-80882","DOIUrl":null,"url":null,"abstract":"\n Extrusion-based additive manufacturing of large thermoplastic structures has significant emerging applications. The most popular approach to economically achieving such 3D printing is to increase the polymer flow rate along with the layer height and line width. However, this creates a fundamental compromise between the achievable geometric fidelity and the printing throughput. We explore a Multiplexed Fused Filament Fabrication (MF3) approach in which an array of FFF extruders concurrently prints different sections of the same part using small layer heights and line widths. Mounting all the extruders on one cartesian gantry without individual control of each extruder’s motion enables simple machine construction and control. 3D geometric complexity is realized by rastering the extruder array across the smallest rectangle bounding each 2D layer and by spatially specific deposition via “dynamic” filament retraction/ advancement in the extruders. The dynamic moniker is because, unlike conventional single extruder FFF, the extruder array does not stop during dynamic filament retraction/advancement. This achieves higher throughput at greater resolution without material-intensive overprinting and machining, geometrically-limited throughput of the dual-extruder strategy, cost and geometric limitations of robot-based multiplexing, and the complexity and geometric limitations of previous gantry-based multiplexing efforts. Our experiments reveal the parameters that affect dynamic retraction and advancement, and show a previously unknown coupling between the efficacy of dynamic filament retraction and dynamic filament advancement. We create part-scale thermal simulations to model temperature evolution in the part under the action of multiple concurrently acting extruders, revealing a unique temperature history that can affect bonding and mechanical properties. We show that MF3 can enable resilience to extruder failure by allowing other extruders to take over part fabrication while the damaged extruder is being replaced. We also demonstrate that MF3 enables flexibility in part scale and geometry, i.e., the ability to make multiple smaller parts of similar or distinct geometries in one production run and lesser number of larger parts of similar or distinct geometries in the next production run. Finally, we quantitatively analyze the future potential of MF3 to achieve similar or greater throughput than state-of-the-art Big Area Additive Manufacturing while significantly enhancing the geometric resolution.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-80882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Extrusion-based additive manufacturing of large thermoplastic structures has significant emerging applications. The most popular approach to economically achieving such 3D printing is to increase the polymer flow rate along with the layer height and line width. However, this creates a fundamental compromise between the achievable geometric fidelity and the printing throughput. We explore a Multiplexed Fused Filament Fabrication (MF3) approach in which an array of FFF extruders concurrently prints different sections of the same part using small layer heights and line widths. Mounting all the extruders on one cartesian gantry without individual control of each extruder’s motion enables simple machine construction and control. 3D geometric complexity is realized by rastering the extruder array across the smallest rectangle bounding each 2D layer and by spatially specific deposition via “dynamic” filament retraction/ advancement in the extruders. The dynamic moniker is because, unlike conventional single extruder FFF, the extruder array does not stop during dynamic filament retraction/advancement. This achieves higher throughput at greater resolution without material-intensive overprinting and machining, geometrically-limited throughput of the dual-extruder strategy, cost and geometric limitations of robot-based multiplexing, and the complexity and geometric limitations of previous gantry-based multiplexing efforts. Our experiments reveal the parameters that affect dynamic retraction and advancement, and show a previously unknown coupling between the efficacy of dynamic filament retraction and dynamic filament advancement. We create part-scale thermal simulations to model temperature evolution in the part under the action of multiple concurrently acting extruders, revealing a unique temperature history that can affect bonding and mechanical properties. We show that MF3 can enable resilience to extruder failure by allowing other extruders to take over part fabrication while the damaged extruder is being replaced. We also demonstrate that MF3 enables flexibility in part scale and geometry, i.e., the ability to make multiple smaller parts of similar or distinct geometries in one production run and lesser number of larger parts of similar or distinct geometries in the next production run. Finally, we quantitatively analyze the future potential of MF3 to achieve similar or greater throughput than state-of-the-art Big Area Additive Manufacturing while significantly enhancing the geometric resolution.
热塑性塑料多路3D打印
基于挤出的大型热塑性结构的增材制造具有重要的新兴应用。经济地实现这种3D打印的最流行的方法是增加聚合物的流速以及层高和线宽。然而,这在可实现的几何保真度和打印吞吐量之间造成了根本性的妥协。我们探索了一种多路熔融长丝制造(MF3)方法,其中FFF挤出机阵列同时使用小层高度和线宽打印同一部件的不同部分。将所有挤出机安装在一个笛卡尔龙门上,无需单独控制每个挤出机的运动,使机器结构和控制变得简单。3D几何复杂性是通过在每个2D层边界的最小矩形上对挤出机阵列进行光栅化,以及通过挤出机中的“动态”长丝收缩/推进进行空间特定沉积来实现的。动态名称是因为,与传统的单挤出机FFF不同,挤出机阵列在动态长丝收缩/推进过程中不会停止。这可以在更高分辨率下实现更高的吞吐量,而无需材料密集的套印和加工,双挤出机策略的几何限制吞吐量,基于机器人的多路复用的成本和几何限制,以及先前基于龙门架的多路复用的复杂性和几何限制。我们的实验揭示了影响动态回撤和动态回撤的参数,并揭示了动态回撤和动态回撤之间的耦合效应。我们创建了局部尺度的热模拟来模拟在多个同时作用的挤出机的作用下零件的温度演变,揭示了一个独特的温度历史,可以影响粘合和机械性能。我们表明,MF3可以使弹性挤出机故障,允许其他挤出机接管部分制造,而损坏的挤出机被更换。我们还证明,MF3实现了零件规模和几何形状的灵活性,即在一个生产运行中制造类似或不同几何形状的多个较小零件的能力,以及在下一次生产运行中制造类似或不同几何形状的较少数量的较大零件的能力。最后,我们定量分析了MF3的未来潜力,以实现与最先进的大面积增材制造相似或更高的吞吐量,同时显着提高几何分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信