SiRCub, A Novel Approach to Recognize Agricultural Crops Using Supervised Classification

IF 1.3 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
J. C. Tomàs, F. Faria, J. Esquerdo, A. Coutinho, C. B. Medeiros
{"title":"SiRCub, A Novel Approach to Recognize Agricultural Crops Using Supervised Classification","authors":"J. C. Tomàs, F. Faria, J. Esquerdo, A. Coutinho, C. B. Medeiros","doi":"10.4018/978-1-5225-7033-2.ch050","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to deal with agricultural crop recognition using SVM (Support Vector Machine), applied to time series of NDVI images. The presented method can be divided into two steps. First, the Timesat software package is used to extract a set of crop features from the NDVI time series. These features serve as descriptors that characterize each NDVI vegetation curve, i.e., the period comprised between sowing and harvesting dates. Then, it is used an SVM to learn the patterns that define each type of crop, and create a crop model that allows classifying new series. The authors present a set of experiments that show the effectiveness of this technique. They evaluated their algorithm with a collection of more than 3000 time series from the Brazilian State of Mato Grosso spanning 4 years (2009-2013). Such time series were annotated in the field by specialists from Embrapa (Brazilian Agricultural Research Corporation). This methodology is generic, and can be adapted to distinct regions and crop profiles.","PeriodicalId":54004,"journal":{"name":"International Journal of Agricultural and Environmental Information Systems","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Environmental Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7033-2.ch050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new approach to deal with agricultural crop recognition using SVM (Support Vector Machine), applied to time series of NDVI images. The presented method can be divided into two steps. First, the Timesat software package is used to extract a set of crop features from the NDVI time series. These features serve as descriptors that characterize each NDVI vegetation curve, i.e., the period comprised between sowing and harvesting dates. Then, it is used an SVM to learn the patterns that define each type of crop, and create a crop model that allows classifying new series. The authors present a set of experiments that show the effectiveness of this technique. They evaluated their algorithm with a collection of more than 3000 time series from the Brazilian State of Mato Grosso spanning 4 years (2009-2013). Such time series were annotated in the field by specialists from Embrapa (Brazilian Agricultural Research Corporation). This methodology is generic, and can be adapted to distinct regions and crop profiles.
一种基于监督分类的农作物识别新方法
提出了一种将支持向量机(SVM)应用于NDVI时间序列图像的农作物识别的新方法。该方法可分为两个步骤。首先,使用Timesat软件包从NDVI时间序列中提取一组作物特征。这些特征作为描述每个NDVI植被曲线的描述符,即播种和收获日期之间的时间。然后,使用支持向量机学习定义每种作物类型的模式,并创建允许对新系列进行分类的作物模型。作者提出了一组实验来证明这种技术的有效性。他们用巴西马托格罗索州4年(2009-2013年)的3000多个时间序列来评估他们的算法。这些时间序列由Embrapa(巴西农业研究公司)的专家在现场进行注释。这种方法是通用的,可以适应不同的地区和作物概况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Agricultural and Environmental Information Systems
International Journal of Agricultural and Environmental Information Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.70
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信