Cell-wall degradation and nutrient release pattern in decomposing leaf litter of Bambusa tulda Roxb. and Dendrocalamus hamiltonii Nees. in a bamboo-based agroforestry system in north-east India

Q4 Agricultural and Biological Sciences
S. Deb, A. Arunachalam, K. Arunachalam
{"title":"Cell-wall degradation and nutrient release pattern in decomposing leaf litter of Bambusa tulda Roxb. and Dendrocalamus hamiltonii Nees. in a bamboo-based agroforestry system in north-east India","authors":"S. Deb, A. Arunachalam, K. Arunachalam","doi":"10.1163/156915905774309964","DOIUrl":null,"url":null,"abstract":"Decomposition dynamics, nutrient mineralization and cell-wall degradation of leaf litter of Bambusa tulda and Dendrocalamus hamiltonii were studied in bamboo-based traditional agroforestry systems of Arunachal Pradesh. Initial litter chemistry showed the identical leaf characteristics of both the species, but the species cannot be considered as good residue, as both of them had a greater initial C/N ratio (>25). The decay pattern showed three distinct phases during the field incubation period (0–90 days, 90–180 days and 180–270 days). The annual decay rate (k) varied from 3.34 in D. hamiltonii to 3.52 in B. tulda. N and P release from the decomposing litter was influenced by the seasonal cycle of mineralization and immobilization processes. Net mineralization was rapid during the later stage of decomposition. N and P remaining after 90% of decomposition in the decomposing leaf litter were 8.85–9.45% and 0.47–1.40%, respectively, in B. tulda and D. hamiltonii. The concentration of lignin increased, whereas cellulose and hemicellulose decreased during decomposition. Overall, the study revealed that Bambusa sp. have a higher N content and less lignin and carbon contents in their leaf litter and in addition they decomposed more rapidly than the residues of Dendrocalamus sp. Hence, B. tulda can be considered more suitable than D. hamiltonii for nutrient enrichment in traditional agroforestry and/or in the rehabilitation of the degraded jhum land.","PeriodicalId":39305,"journal":{"name":"Journal of Bamboo and Rattan","volume":"10 1","pages":"257-277"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bamboo and Rattan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/156915905774309964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5

Abstract

Decomposition dynamics, nutrient mineralization and cell-wall degradation of leaf litter of Bambusa tulda and Dendrocalamus hamiltonii were studied in bamboo-based traditional agroforestry systems of Arunachal Pradesh. Initial litter chemistry showed the identical leaf characteristics of both the species, but the species cannot be considered as good residue, as both of them had a greater initial C/N ratio (>25). The decay pattern showed three distinct phases during the field incubation period (0–90 days, 90–180 days and 180–270 days). The annual decay rate (k) varied from 3.34 in D. hamiltonii to 3.52 in B. tulda. N and P release from the decomposing litter was influenced by the seasonal cycle of mineralization and immobilization processes. Net mineralization was rapid during the later stage of decomposition. N and P remaining after 90% of decomposition in the decomposing leaf litter were 8.85–9.45% and 0.47–1.40%, respectively, in B. tulda and D. hamiltonii. The concentration of lignin increased, whereas cellulose and hemicellulose decreased during decomposition. Overall, the study revealed that Bambusa sp. have a higher N content and less lignin and carbon contents in their leaf litter and in addition they decomposed more rapidly than the residues of Dendrocalamus sp. Hence, B. tulda can be considered more suitable than D. hamiltonii for nutrient enrichment in traditional agroforestry and/or in the rehabilitation of the degraded jhum land.
竹叶凋落物分解过程中细胞壁降解及养分释放规律和密菖蒲。在印度东北部一个以竹子为基础的农林业系统中
以竹材为主的传统农林业系统为研究对象,研究了黄竹(Bambusa tulda)和哈密菖蒲(Dendrocalamus hamiltonii)凋落叶的分解动态、养分矿化和细胞壁降解。两种凋落物的初始凋落物化学表现出相同的叶片特征,但由于两种凋落物的初始C/N比都较大(>25),因此不能认为这是良好的残渣。在田间孵育期间,腐烂模式表现为0 ~ 90 d、90 ~ 180 d和180 ~ 270 d三个不同阶段。hamiltonii的年衰减率(k)从3.34到3.52不等。分解凋落物的N和P释放受矿化和固定化过程的季节循环影响。在分解后期,净矿化速度较快。腐解凋落叶中90%分解后的N和P残留量分别为8.85 ~ 9.45%和0.47 ~ 1.40%。木质素的浓度在分解过程中增加,而纤维素和半纤维素的浓度则减少。综上所示,竹林凋落叶中N含量较高,木质素和碳含量较低,且腐解速度快于竹林,因此,在传统农林业和退化林地的恢复中,杜氏白杨比哈密顿白杨更适合养分富集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bamboo and Rattan
Journal of Bamboo and Rattan Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
0.40
自引率
0.00%
发文量
7
期刊介绍: The Journal of Bamboo and Rattan is a peer-reviewed scientific journal and provides a forum for scientific articles and reviews on all aspects of fast growing, multi-purpose pliable species. The scope of the journal encompasses income security, craft industry, small to medium size enterprises, industrial fibre and fuel. Articles related to natural distribution and conservation of species, genetics and biotechnology, harvesting and production systems, and environmental applications are also included, as well as papers on marketing and policy restraints in relation to bamboo, rattan and related species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信