Analysis of SIS-SI Stochastic Model with CTMC on the Spread of Malaria Disease

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
Niswah Yanfa Nabilah Syams, H. Sumarno, P. Sianturi
{"title":"Analysis of SIS-SI Stochastic Model with CTMC on the Spread of Malaria Disease","authors":"Niswah Yanfa Nabilah Syams, H. Sumarno, P. Sianturi","doi":"10.5614/j.math.fund.sci.2021.53.2.1","DOIUrl":null,"url":null,"abstract":"Various mathematical models have been developed to describe the transmission of malaria disease. The purpose of this study was to modify an existing mathematical model of malaria disease by using a CTMC stochastic model. The investigation focused on the transition probability, the basic reproduction number (R0), the outbreak probability, the expected time required to reach a disease-free equilibrium, and the quasi-stationary probability distribution. The population system will experience disease outbreak if R0>1, whereas an outbreak will not occur in the population system if R0≤1. The probability that a mosquito bites an infectious human is denoted as k, while θ is associated with human immunity. Based on the numerical analysis conducted, k and θ have high a contribution to the distribution of malaria disease. This conclusion is based on their impact on the outbreak probability and the expected time required to reach a disease-free equilibrium.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"83 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2021.53.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

Various mathematical models have been developed to describe the transmission of malaria disease. The purpose of this study was to modify an existing mathematical model of malaria disease by using a CTMC stochastic model. The investigation focused on the transition probability, the basic reproduction number (R0), the outbreak probability, the expected time required to reach a disease-free equilibrium, and the quasi-stationary probability distribution. The population system will experience disease outbreak if R0>1, whereas an outbreak will not occur in the population system if R0≤1. The probability that a mosquito bites an infectious human is denoted as k, while θ is associated with human immunity. Based on the numerical analysis conducted, k and θ have high a contribution to the distribution of malaria disease. This conclusion is based on their impact on the outbreak probability and the expected time required to reach a disease-free equilibrium.
带有CTMC的SIS-SI随机模型对疟疾传播的分析
人们开发了各种数学模型来描述疟疾的传播。本研究的目的是利用CTMC随机模型对现有的疟疾数学模型进行修正。调查的重点是转移概率、基本繁殖数(R0)、爆发概率、达到无病平衡所需的预期时间和准平稳概率分布。当R0>1时,种群系统将发生疾病暴发,而当R0≤1时,种群系统不会发生疾病暴发。蚊子叮咬有传染性的人的概率用k表示,θ与人体免疫力有关。根据所进行的数值分析,k和θ对疟疾的分布有很大的贡献。这一结论是基于它们对爆发概率的影响和达到无病平衡所需的预期时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信