Rydberg electromagnetically induced transparency in 40K ultracold Fermi gases

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Guoqi Bian, Biao Shan, Lianghui Huang, Jing Zhang
{"title":"Rydberg electromagnetically induced transparency in 40K ultracold Fermi gases","authors":"Guoqi Bian, Biao Shan, Lianghui Huang, Jing Zhang","doi":"10.3788/col202321.100201","DOIUrl":null,"url":null,"abstract":"We report the measurement of the electromagnetically induced transparency (EIT) with Rydberg states in ultracold 40 K Fermi gases, which is obtained through a two-photon process with the ladder scheme. Rydberg – EIT lines are obtained by measuring the atomic losses instead of the transmitted probe beam. Based on the laser frequency stabilization locking to the superstable cavity, we study the Rydberg – EIT line shapes for the 37s and 35d states. We experimentally demonstrate the significant change in the Rydberg – EIT spectrum by changing the principal quantum number of the Rydberg state (n = 37 = 52 and l = 0). Moreover, the transparency peak position shift is observed, which may be induced by the interaction of the Rydberg atoms. This work provides a platform to explore many interesting behaviors involving Rydberg states in ultracold Fermi gases.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"30 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.100201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We report the measurement of the electromagnetically induced transparency (EIT) with Rydberg states in ultracold 40 K Fermi gases, which is obtained through a two-photon process with the ladder scheme. Rydberg – EIT lines are obtained by measuring the atomic losses instead of the transmitted probe beam. Based on the laser frequency stabilization locking to the superstable cavity, we study the Rydberg – EIT line shapes for the 37s and 35d states. We experimentally demonstrate the significant change in the Rydberg – EIT spectrum by changing the principal quantum number of the Rydberg state (n = 37 = 52 and l = 0). Moreover, the transparency peak position shift is observed, which may be induced by the interaction of the Rydberg atoms. This work provides a platform to explore many interesting behaviors involving Rydberg states in ultracold Fermi gases.
40K超冷费米气体中Rydberg电磁感应透明
本文报道了在超冷的40 K费米气体中,用阶梯结构的双光子过程测量了具有里德堡态的电磁感应透明(EIT)。Rydberg - EIT线是通过测量原子损耗而不是发射探针光束来获得的。基于激光稳频锁定到超稳腔,我们研究了37s和35d状态的Rydberg - EIT线形状。通过改变Rydberg态的主量子数(n = 37 = 52, l = 0),实验证明了Rydberg - EIT谱的显著变化,并且观察到透明峰的位置移位,这可能是由Rydberg原子的相互作用引起的。这项工作为探索超冷费米气体中涉及里德堡态的许多有趣行为提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信