CANFIS based DSTATCOM modelling for solving power quality problems

B. B. Bukata, R. A. Gezawa
{"title":"CANFIS based DSTATCOM modelling for solving power quality problems","authors":"B. B. Bukata, R. A. Gezawa","doi":"10.37121/JASE.V4I2.148","DOIUrl":null,"url":null,"abstract":"Devolution of the power grid into smart grid was necessitated by the proliferation of sensitive load profiles into the system, as well as incessant environmental challenges. These two factors culminated into aggravated disturbances that cause serious havoc along the entire system structure. The traditional proportional-plus-integral-plus-derivative (PID) solution offered by the distribution synchronous compensator (DSTATCOM) could no longer hold. As such, this paper proposes some soft-computing framework for redesigning DSTATCOM to automatically deal with power quality (PQ) problems in smart distribution grids. A recipe of artificial neural network (ANN) and coactive neuro-fuzzy inference systems (CANFIS) was fabricated for the objective. The system was modelled, simulated, and validated in MATLAB/Simulink SimPowerSystems environment. The performance of the CANFIS against adaptive neuro-fuzzy inference systems (ANFIS), ANN and fuzzy logic controllers’ algorithms proved superior in handling PQ issues like voltage sag, voltage swell and harmonics.","PeriodicalId":92218,"journal":{"name":"International journal of advances in science, engineering and technology","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of advances in science, engineering and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37121/JASE.V4I2.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Devolution of the power grid into smart grid was necessitated by the proliferation of sensitive load profiles into the system, as well as incessant environmental challenges. These two factors culminated into aggravated disturbances that cause serious havoc along the entire system structure. The traditional proportional-plus-integral-plus-derivative (PID) solution offered by the distribution synchronous compensator (DSTATCOM) could no longer hold. As such, this paper proposes some soft-computing framework for redesigning DSTATCOM to automatically deal with power quality (PQ) problems in smart distribution grids. A recipe of artificial neural network (ANN) and coactive neuro-fuzzy inference systems (CANFIS) was fabricated for the objective. The system was modelled, simulated, and validated in MATLAB/Simulink SimPowerSystems environment. The performance of the CANFIS against adaptive neuro-fuzzy inference systems (ANFIS), ANN and fuzzy logic controllers’ algorithms proved superior in handling PQ issues like voltage sag, voltage swell and harmonics.
基于CANFIS的DSTATCOM建模解决电能质量问题
由于系统中敏感负荷分布的激增以及不断的环境挑战,电网向智能电网的转移是必要的。这两个因素最终加剧了对整个系统结构造成严重破坏的干扰。传统的由分布同步补偿器(DSTATCOM)提供的比例+积分+导数(PID)解决方案已不能满足要求。为此,本文提出了一些软计算框架,用于重新设计DSTATCOM以自动处理智能配电网中的电能质量问题。为此,提出了人工神经网络(ANN)和协同神经模糊推理系统(CANFIS)的配方。在MATLAB/Simulink SimPowerSystems环境下对系统进行了建模、仿真和验证。CANFIS对自适应神经模糊推理系统(ANFIS)、人工神经网络和模糊逻辑控制器算法的性能在处理电压骤降、电压膨胀和谐波等PQ问题方面表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信