The minor allele of rs17427875 in long non-coding RNA-HOXA11-AS influences the prognosis of subarachnoid hemorrhage (SAH) via modulating miR-15a and STAT3 expression
{"title":"The minor allele of rs17427875 in long non-coding RNA-HOXA11-AS influences the prognosis of subarachnoid hemorrhage (SAH) via modulating miR-15a and STAT3 expression","authors":"Yong Zhou, Zhiming Xu, Shengli Li","doi":"10.18632/aging.204126","DOIUrl":null,"url":null,"abstract":"Background: HOAX11-AS was reported to promote the progression of liver cancer via the signaling pathway of miR-15a-3p/STAT3. In this study, we investigated the effect of rs17427875 on the prognosis of subarachnoid hemorrhage (SAH) and its underlying molecular mechanisms. Methods: 158 SAH patients were recruited and grouped according to their genotypes rs17427875. Peripheral blood and cerebrospinal fluid (CSF) samples were collected for subsequent analysis. Quantitative real-time PCR, luciferase assays, Western blot and ELISA were performed to analyze the correlations between the expression of lncRNA-HOXA11-AS, miR-15a, TNF-α and NF-κB. Results: The survival rate was remarkably higher in SAH patients carrying the AA genotype of rs17427875 when compared with those carrying the AT genotype. The expression of miR-15a was significantly repressed in the peripheral blood and CSF of SAH patients carrying the AT allele when compared with that in patients carrying the AA allele. MiR-15a showed a remarkable efficacy in inhibiting the luciferase activity of wild type lncRNA-HOXA11-AS and STAT3 in THP-1 cells. P-HOXA11-AS-T showed a stronger ability to suppress the expression of miR-15a and activate the expression of STAT3, TNF-α and NF-κB in THP-1 cells when compared with P-HOXA11-AS-A. Conclusions: The findings demonstrated that the presence of the minor allele of rs17427875 in lncRNA-HOXA11-AS could increase the expression level of lncRNA-HOXA11-AS, thus elevating the expression level of STAT3 via down-regulating miR-15a, and increased STAT3 expression could aggravate inflammation to cause poor prognosis of SAH. Therefore, the rs17427875 polymorphism can be used as a potential biomarker for the prognosis of SAH.","PeriodicalId":7669,"journal":{"name":"Aging (Albany NY)","volume":"16 1","pages":"5075 - 5085"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging (Albany NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/aging.204126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Background: HOAX11-AS was reported to promote the progression of liver cancer via the signaling pathway of miR-15a-3p/STAT3. In this study, we investigated the effect of rs17427875 on the prognosis of subarachnoid hemorrhage (SAH) and its underlying molecular mechanisms. Methods: 158 SAH patients were recruited and grouped according to their genotypes rs17427875. Peripheral blood and cerebrospinal fluid (CSF) samples were collected for subsequent analysis. Quantitative real-time PCR, luciferase assays, Western blot and ELISA were performed to analyze the correlations between the expression of lncRNA-HOXA11-AS, miR-15a, TNF-α and NF-κB. Results: The survival rate was remarkably higher in SAH patients carrying the AA genotype of rs17427875 when compared with those carrying the AT genotype. The expression of miR-15a was significantly repressed in the peripheral blood and CSF of SAH patients carrying the AT allele when compared with that in patients carrying the AA allele. MiR-15a showed a remarkable efficacy in inhibiting the luciferase activity of wild type lncRNA-HOXA11-AS and STAT3 in THP-1 cells. P-HOXA11-AS-T showed a stronger ability to suppress the expression of miR-15a and activate the expression of STAT3, TNF-α and NF-κB in THP-1 cells when compared with P-HOXA11-AS-A. Conclusions: The findings demonstrated that the presence of the minor allele of rs17427875 in lncRNA-HOXA11-AS could increase the expression level of lncRNA-HOXA11-AS, thus elevating the expression level of STAT3 via down-regulating miR-15a, and increased STAT3 expression could aggravate inflammation to cause poor prognosis of SAH. Therefore, the rs17427875 polymorphism can be used as a potential biomarker for the prognosis of SAH.