Bias detection in Wikipedia articles. A study on Polish and English Datasets.

Weronika Stankiewicz, Katarzyna Baraniak, M. Sydow
{"title":"Bias detection in Wikipedia articles. A study on Polish and English Datasets.","authors":"Weronika Stankiewicz, Katarzyna Baraniak, M. Sydow","doi":"10.1145/3486622.3494007","DOIUrl":null,"url":null,"abstract":"Nowadays, an almost unlimited number of information sources and polarized media hamper our ability to distinguish between biased and neutral speech. It creates a need for an automatic tool that could comprehend human language and assess whether presented information is conveyed without any editorial bias. In this work, we introduce models able to detect bias on a sentence level. As other authors before, we continue to utilize Wikipedia revision history to collect examples of biased and unbiased speech. For the first time, this work introduces a corpus of labeled subjective and neutral sentences in the Polish language. Furthermore, we compare the performance of LSTM and BERT models trained on English and Polish sentences. As part of the findings, we present cues for subjectivity that were detected during the analysis. We also present a new dataset WNC-pl a Polish corpus of biased and unbiased sentences.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3494007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, an almost unlimited number of information sources and polarized media hamper our ability to distinguish between biased and neutral speech. It creates a need for an automatic tool that could comprehend human language and assess whether presented information is conveyed without any editorial bias. In this work, we introduce models able to detect bias on a sentence level. As other authors before, we continue to utilize Wikipedia revision history to collect examples of biased and unbiased speech. For the first time, this work introduces a corpus of labeled subjective and neutral sentences in the Polish language. Furthermore, we compare the performance of LSTM and BERT models trained on English and Polish sentences. As part of the findings, we present cues for subjectivity that were detected during the analysis. We also present a new dataset WNC-pl a Polish corpus of biased and unbiased sentences.
维基百科文章中的偏见检测。波兰语和英语数据集的研究。
如今,几乎无限的信息来源和两极分化的媒体阻碍了我们区分有偏见和中立言论的能力。这就产生了对一种自动工具的需求,这种工具可以理解人类语言,并评估所呈现的信息是否在没有任何编辑偏见的情况下传达。在这项工作中,我们引入了能够在句子水平上检测偏见的模型。和之前的其他作者一样,我们继续利用维基百科的修订历史来收集有偏见和无偏见言论的例子。本文首次引入了波兰语中标注的主观句和中性句语料库。此外,我们比较了LSTM和BERT模型在英语和波兰语句子上的表现。作为研究结果的一部分,我们提出了在分析过程中检测到的主观性线索。我们还提出了一个新的数据集WNC-pl,一个波兰语的有偏和无偏句子语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信