{"title":"Transverse-field bandgap modulation on graphene nanoribbon transistors by double-self-aligned spacers","authors":"Lieh-Ting Tung, M. V. Mateus, E. Kan","doi":"10.1109/DRC.2012.6256978","DOIUrl":null,"url":null,"abstract":"Independently-driven tri-gate graphene nanoribbon transistors were implemented by CMOS-compatible double-self-aligned spacer lithography, which effectively suppresses the line edge roughness and width variation. The consistent electrical characteristics show bandgap modulation with transverse electrical fields and ambipolar conduction with perpendicular fields in graphene film.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"6 1","pages":"113-114"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Independently-driven tri-gate graphene nanoribbon transistors were implemented by CMOS-compatible double-self-aligned spacer lithography, which effectively suppresses the line edge roughness and width variation. The consistent electrical characteristics show bandgap modulation with transverse electrical fields and ambipolar conduction with perpendicular fields in graphene film.