Assessment and design of an engineering structure with polymorphic uncertainty quantification

Q1 Mathematics
Iason Papaioannou, Marco Daub, Martin Drieschner, Fabian Duddeck, Max Ehre, Lukas Eichner, Martin Eigel, Marco Götz, Wolfgang Graf, Lars Grasedyck, Robert Gruhlke, Dietmar Hömberg, Michael Kaliske, Dieter Moser, Yuri Petryna, Daniel Straub
{"title":"Assessment and design of an engineering structure with polymorphic uncertainty quantification","authors":"Iason Papaioannou,&nbsp;Marco Daub,&nbsp;Martin Drieschner,&nbsp;Fabian Duddeck,&nbsp;Max Ehre,&nbsp;Lukas Eichner,&nbsp;Martin Eigel,&nbsp;Marco Götz,&nbsp;Wolfgang Graf,&nbsp;Lars Grasedyck,&nbsp;Robert Gruhlke,&nbsp;Dietmar Hömberg,&nbsp;Michael Kaliske,&nbsp;Dieter Moser,&nbsp;Yuri Petryna,&nbsp;Daniel Straub","doi":"10.1002/gamm.201900009","DOIUrl":null,"url":null,"abstract":"<p>Engineers are faced with the challenge of supporting decision making under uncertainty. Engineering decisions often depend on model-based predictions of the performance of the engineering system of interest. Input uncertainties of models can be categorized into two distinct types: aleatory (random/irreducible) or epistemic (reducible). Polymorphic uncertainty quantification (UQ) can be used to treat aleatory and epistemic uncertainties in a unified framework. The polymorphic UQ framework employs probability theory to model aleatory variables and alternative approaches (interval, fuzzy, Bayesian probabilistic, and combinations thereof) to model epistemic variables. This paper compares different polymorphic UQ approaches with respect to their ability to support a simple engineering decision. The comparison is based on a test-bed example, whereby aleatory variables are defined in terms of probability distributions and epistemic variables are described based on limited information (sparse data or intervals). Two challenges related to common engineering decisions (safety assessment and reliability-based design) serve as a basis for the comparison. Five independent research groups applied different models to describe the epistemic parameters based on a subjective interpretation of the given information. The comparison of the results reveals a strong influence of both the subjective choices on the models of the epistemic variables and the chosen basis for assessing the performance of the structure on the obtained decision outcomes.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"42 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.201900009","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.201900009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14

Abstract

Engineers are faced with the challenge of supporting decision making under uncertainty. Engineering decisions often depend on model-based predictions of the performance of the engineering system of interest. Input uncertainties of models can be categorized into two distinct types: aleatory (random/irreducible) or epistemic (reducible). Polymorphic uncertainty quantification (UQ) can be used to treat aleatory and epistemic uncertainties in a unified framework. The polymorphic UQ framework employs probability theory to model aleatory variables and alternative approaches (interval, fuzzy, Bayesian probabilistic, and combinations thereof) to model epistemic variables. This paper compares different polymorphic UQ approaches with respect to their ability to support a simple engineering decision. The comparison is based on a test-bed example, whereby aleatory variables are defined in terms of probability distributions and epistemic variables are described based on limited information (sparse data or intervals). Two challenges related to common engineering decisions (safety assessment and reliability-based design) serve as a basis for the comparison. Five independent research groups applied different models to describe the epistemic parameters based on a subjective interpretation of the given information. The comparison of the results reveals a strong influence of both the subjective choices on the models of the epistemic variables and the chosen basis for assessing the performance of the structure on the obtained decision outcomes.

基于多态不确定性量化的工程结构评估与设计
工程师面临着在不确定条件下支持决策的挑战。工程决策通常依赖于对感兴趣的工程系统性能的基于模型的预测。模型的输入不确定性可以分为两种不同的类型:任意(随机/不可约)或认知(可约)。多态不确定性量化(UQ)可以在一个统一的框架中处理偶然性和认识性不确定性。多态UQ框架采用概率论对偶然性变量建模,并采用替代方法(区间、模糊、贝叶斯概率及其组合)对认知变量建模。本文比较了不同的多态UQ方法在支持简单工程决策方面的能力。这种比较是基于一个测试平台的例子,在这个例子中,随机变量是根据概率分布来定义的,而认知变量是基于有限的信息(稀疏数据或间隔)来描述的。与常见工程决策相关的两个挑战(安全评估和基于可靠性的设计)作为比较的基础。五个独立的研究小组应用不同的模型来描述基于对给定信息的主观解释的认知参数。结果的比较揭示了主观选择对认知变量模型的强烈影响,以及评估结构性能的选择基础对获得的决策结果的强烈影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信