Does the Solution to the Non-linear Diophantine Equation 3x+35y=Z2 Exist?

D. Biswas
{"title":"Does the Solution to the Non-linear Diophantine Equation 3x+35y=Z2 Exist?","authors":"D. Biswas","doi":"10.3329/jsr.v14i3.58535","DOIUrl":null,"url":null,"abstract":"This paper investigates the solutions (if any) of the Diophantine equation 3x + 35y = Z2, where  , x, y, and z are whole numbers. Diophantine equations are drawing the attention of researchers in diversified fields over the years. These are equations that have more unknowns than a number of equations. Diophantine equations are found in cryptography, chemistry, trigonometry, astronomy, and abstract algebra. The absence of any generalized method by which each Diophantine equation can be solved is a challenge for researchers. In the present communication, it is found with the help of congruence theory and Catalan’s conjecture that the Diophantine equation 3x + 35y = Z2 has only two solutions of  (x, y, z) as  (1, 0, 2) and (0, 1, 6) in non-negative integers.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i3.58535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the solutions (if any) of the Diophantine equation 3x + 35y = Z2, where  , x, y, and z are whole numbers. Diophantine equations are drawing the attention of researchers in diversified fields over the years. These are equations that have more unknowns than a number of equations. Diophantine equations are found in cryptography, chemistry, trigonometry, astronomy, and abstract algebra. The absence of any generalized method by which each Diophantine equation can be solved is a challenge for researchers. In the present communication, it is found with the help of congruence theory and Catalan’s conjecture that the Diophantine equation 3x + 35y = Z2 has only two solutions of  (x, y, z) as  (1, 0, 2) and (0, 1, 6) in non-negative integers.
非线性丢番图方程3x+35y=Z2的解存在吗?
本文研究Diophantine方程3x + 35y = Z2的解(如果有),其中,x, y, z为整数。丢番图方程近年来引起了各领域研究者的广泛关注。这些方程比其他方程有更多的未知数。丢芬图方程存在于密码学、化学、三角学、天文学和抽象代数中。对于研究人员来说,没有一种可以求解丢番图方程的通用方法是一个挑战。本文利用同余理论和Catalan猜想,得到了丢芬图方程3x + 35y = Z2在非负整数中只有两个解(x, y, z)分别为(1,0,2)和(0,1,6)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信