KA Seetseng, JH Barnard, LD van Rensburg, CC du Preez
{"title":"Canola (Brassica napus L.) water use indicators as affected by sustained deficit irrigation and plant density in central Free State, South Africa","authors":"KA Seetseng, JH Barnard, LD van Rensburg, CC du Preez","doi":"10.17159/wsa/2023.v49.i2.3965","DOIUrl":null,"url":null,"abstract":"In South Africa canola (Brassica napus L.) is cultivated in rotation with wheat under winter rainfall in the Western Cape Province, primarily for seed to make oil. Expansion of the crop to the other 8 provinces is proposed to reduce shortages of locally produced plant oils. At the same time, canola can serve as a rotational crop for wheat in these summer rainfall provinces. In central Free State, information on evapotranspiration and various water use indicators for canola as influenced by sustained deficit irrigation and plant density is lacking. An experiment with a line source sprinkler irrigation system was therefore conducted, comprising of full irrigation as a control with 4 sustained deficit irrigation levels (mean reduction in irrigation depth per event of 67%, 52%, 34% and 19%) and 5 plant densities (25, 50, 75, 100 and 125 plants‧m−2). Mean seasonal maximum evapotranspiration amounted to 429 mm across plant densities. Plant density did not significantly influence seasonal evapotranspiration. Reducing the irrigation depth per event by more than 20% decreased seasonal evapotranspiration by a mean 3.5 mm per percentage increase in irrigation depth. A maximum biomass water productivity of 22 kg‧ha−1‧mm−1 was measured with full irrigation and a plant density of 75 plants‧m−2. Seed water productivity amounted to a high of 11 kg‧ha−1‧mm−1 with full irrigation and a plant density of 25 plants‧m−2. A percentage reduction in irrigation depth and increase in plant density above 25 plants‧m−2 will reduce seed water productivity by 0.071 and 0.033 kg‧ha−1‧mm−1, respectively. Sustained deficit irrigation increased water use efficiency by a mean 0.5% per percentage reduction in irrigation depth per event.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2023.v49.i2.3965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In South Africa canola (Brassica napus L.) is cultivated in rotation with wheat under winter rainfall in the Western Cape Province, primarily for seed to make oil. Expansion of the crop to the other 8 provinces is proposed to reduce shortages of locally produced plant oils. At the same time, canola can serve as a rotational crop for wheat in these summer rainfall provinces. In central Free State, information on evapotranspiration and various water use indicators for canola as influenced by sustained deficit irrigation and plant density is lacking. An experiment with a line source sprinkler irrigation system was therefore conducted, comprising of full irrigation as a control with 4 sustained deficit irrigation levels (mean reduction in irrigation depth per event of 67%, 52%, 34% and 19%) and 5 plant densities (25, 50, 75, 100 and 125 plants‧m−2). Mean seasonal maximum evapotranspiration amounted to 429 mm across plant densities. Plant density did not significantly influence seasonal evapotranspiration. Reducing the irrigation depth per event by more than 20% decreased seasonal evapotranspiration by a mean 3.5 mm per percentage increase in irrigation depth. A maximum biomass water productivity of 22 kg‧ha−1‧mm−1 was measured with full irrigation and a plant density of 75 plants‧m−2. Seed water productivity amounted to a high of 11 kg‧ha−1‧mm−1 with full irrigation and a plant density of 25 plants‧m−2. A percentage reduction in irrigation depth and increase in plant density above 25 plants‧m−2 will reduce seed water productivity by 0.071 and 0.033 kg‧ha−1‧mm−1, respectively. Sustained deficit irrigation increased water use efficiency by a mean 0.5% per percentage reduction in irrigation depth per event.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.