Canola (Brassica napus L.) water use indicators as affected by sustained deficit irrigation and plant density in central Free State, South Africa

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
KA Seetseng, JH Barnard, LD van Rensburg, CC du Preez
{"title":"Canola (Brassica napus L.) water use indicators as affected by sustained deficit irrigation and plant density in central Free State, South Africa","authors":"KA Seetseng, JH Barnard, LD van Rensburg, CC du Preez","doi":"10.17159/wsa/2023.v49.i2.3965","DOIUrl":null,"url":null,"abstract":"In South Africa canola (Brassica napus L.) is cultivated in rotation with wheat under winter rainfall in the Western Cape Province, primarily for seed to make oil. Expansion of the crop to the other 8 provinces is proposed to reduce shortages of locally produced plant oils. At the same time, canola can serve as a rotational crop for wheat in these summer rainfall provinces. In central Free State, information on evapotranspiration and various water use indicators for canola as influenced by sustained deficit irrigation and plant density is lacking. An experiment with a line source sprinkler irrigation system was therefore conducted, comprising of full irrigation as a control with 4 sustained deficit irrigation levels (mean reduction in irrigation depth per event of 67%, 52%, 34% and 19%) and 5 plant densities (25, 50, 75, 100 and 125 plants‧m−2). Mean seasonal maximum evapotranspiration amounted to 429 mm across plant densities. Plant density did not significantly influence seasonal evapotranspiration. Reducing the irrigation depth per event by more than 20% decreased seasonal evapotranspiration by a mean 3.5 mm per percentage increase in irrigation depth. A maximum biomass water productivity of 22 kg‧ha−1‧mm−1 was measured with full irrigation and a plant density of 75 plants‧m−2. Seed water productivity amounted to a high of 11 kg‧ha−1‧mm−1 with full irrigation and a plant density of 25 plants‧m−2. A percentage reduction in irrigation depth and increase in plant density above 25 plants‧m−2 will reduce seed water productivity by 0.071 and 0.033 kg‧ha−1‧mm−1, respectively. Sustained deficit irrigation increased water use efficiency by a mean 0.5% per percentage reduction in irrigation depth per event.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2023.v49.i2.3965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In South Africa canola (Brassica napus L.) is cultivated in rotation with wheat under winter rainfall in the Western Cape Province, primarily for seed to make oil. Expansion of the crop to the other 8 provinces is proposed to reduce shortages of locally produced plant oils. At the same time, canola can serve as a rotational crop for wheat in these summer rainfall provinces. In central Free State, information on evapotranspiration and various water use indicators for canola as influenced by sustained deficit irrigation and plant density is lacking. An experiment with a line source sprinkler irrigation system was therefore conducted, comprising of full irrigation as a control with 4 sustained deficit irrigation levels (mean reduction in irrigation depth per event of 67%, 52%, 34% and 19%) and 5 plant densities (25, 50, 75, 100 and 125 plants‧m−2). Mean seasonal maximum evapotranspiration amounted to 429 mm across plant densities. Plant density did not significantly influence seasonal evapotranspiration. Reducing the irrigation depth per event by more than 20% decreased seasonal evapotranspiration by a mean 3.5 mm per percentage increase in irrigation depth. A maximum biomass water productivity of 22 kg‧ha−1‧mm−1 was measured with full irrigation and a plant density of 75 plants‧m−2. Seed water productivity amounted to a high of 11 kg‧ha−1‧mm−1 with full irrigation and a plant density of 25 plants‧m−2. A percentage reduction in irrigation depth and increase in plant density above 25 plants‧m−2 will reduce seed water productivity by 0.071 and 0.033 kg‧ha−1‧mm−1, respectively. Sustained deficit irrigation increased water use efficiency by a mean 0.5% per percentage reduction in irrigation depth per event.
持续亏缺灌溉和植物密度对南非中部自由邦油菜水分利用指标的影响
在南非,在西开普省,油菜(Brassica napus L.)在冬季降雨时与小麦轮作种植,主要用于种子制油。建议将这种作物推广到其他8个省份,以减少当地生产的植物油的短缺。同时,在这些夏季多雨的省份,油菜可以作为小麦的轮作作物。在自由邦中部,缺乏关于油菜籽受持续亏缺灌溉和植物密度影响的蒸散量和各种用水指标的资料。试验采用线源喷灌系统,采用4个持续亏缺灌溉水平(每次事件平均灌溉深度减少67%、52%、34%和19%)和5个植物密度(25、50、75、100和125株·m−2)进行全面灌溉作为对照。不同植物密度的季节平均最大蒸散量为429 mm。植物密度对季节蒸散量影响不显著。每次灌溉深度减少20%以上,灌溉深度每增加一个百分比,季节蒸散量平均减少3.5毫米。在充分灌溉和植物密度为75株·m - 2的情况下,生物量水分生产力最高为22 kg·ha·1·mm - 1。在充分灌溉和种植密度为25株·m−2的情况下,种子水分生产力高达11 kg·ha·1·mm−1。灌溉深度若减少百分之一,而种植密度若增加至25株·ha·1·mm−1以上,则种子水分生产力将分别减少0.071及0.033 kg·ha·1·mm−1。持续亏缺灌溉每减少一次灌溉深度,水利用效率平均提高0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信