Stimuli-responsive hydrogel sponge for ultrafast responsive actuator

Yukun Jian , Baoyi Wu , Xuxu Yang , Yu Peng , Dachuan Zhang , Yang Yang , Huiyu Qiu , Huanhuan Lu , Jiawei Zhang , Tao Chen
{"title":"Stimuli-responsive hydrogel sponge for ultrafast responsive actuator","authors":"Yukun Jian ,&nbsp;Baoyi Wu ,&nbsp;Xuxu Yang ,&nbsp;Yu Peng ,&nbsp;Dachuan Zhang ,&nbsp;Yang Yang ,&nbsp;Huiyu Qiu ,&nbsp;Huanhuan Lu ,&nbsp;Jiawei Zhang ,&nbsp;Tao Chen","doi":"10.1016/j.supmat.2021.100002","DOIUrl":null,"url":null,"abstract":"<div><p>With the ability to deform in response to specific stimuli, polymeric hydrogel actuators are important bionic materials. However, because shape deformation is derived from the diffusion of water molecules, the response rate of hydrogel actuators is usually slow, which severely limits their potential applications. In this work, a thermo-responsive PNIPAm hydrogel sponge is developed, and the hydrogel sponge shows ultrafast de-swelling/swelling capacity (equilibrium time 7 s) and large deformation degree (40%) due to the assistance of capillary force. Hydrogel sponge actuator with rapid response performance is further constructed, and the hydrogel sponge actuator could be used to capture moving objects and living creatures. Moreover, light-controlled directional movement can be achieved by incorporating photothermal functional components into the hydrogel sponge actuator. This work would promote the application of hydrogel actuators in soft robots.</p></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667240521000027/pdfft?md5=2740fa7c5da8f7236805e676d7169404&pid=1-s2.0-S2667240521000027-main.pdf","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240521000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

With the ability to deform in response to specific stimuli, polymeric hydrogel actuators are important bionic materials. However, because shape deformation is derived from the diffusion of water molecules, the response rate of hydrogel actuators is usually slow, which severely limits their potential applications. In this work, a thermo-responsive PNIPAm hydrogel sponge is developed, and the hydrogel sponge shows ultrafast de-swelling/swelling capacity (equilibrium time 7 s) and large deformation degree (40%) due to the assistance of capillary force. Hydrogel sponge actuator with rapid response performance is further constructed, and the hydrogel sponge actuator could be used to capture moving objects and living creatures. Moreover, light-controlled directional movement can be achieved by incorporating photothermal functional components into the hydrogel sponge actuator. This work would promote the application of hydrogel actuators in soft robots.

Abstract Image

用于超快速响应驱动器的刺激响应水凝胶海绵
聚合物水凝胶驱动器具有响应特定刺激而变形的能力,是重要的仿生材料。然而,由于形状变形是由水分子的扩散引起的,水凝胶致动器的响应速度通常很慢,这严重限制了它们的潜在应用。本文研制了一种热响应型PNIPAm水凝胶海绵,该水凝胶海绵在毛细力的辅助下具有超快的消肿/膨胀能力(平衡时间为7 s)和大的变形程度(40%)。进一步构建了具有快速响应性能的水凝胶海绵致动器,该水凝胶海绵致动器可用于捕捉运动物体和生物。此外,通过将光热功能组件集成到水凝胶海绵致动器中,可以实现光控定向运动。该工作将促进水凝胶作动器在软体机器人中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信