Leveraging remotely-sensed vegetation indices to evaluate crop coefficients and actual irrigation requirements in the water-stressed Maipo River Basin of Central Chile

Benjamin D. Goffin , Rishudh Thakur , Sarah Da Conceição Carlos , Duncan Srsic , Caroline Williams , Kenton Ross , Fernando Neira-Román , Carlos Calvo Cortés-Monroy , Venkataraman Lakshmi
{"title":"Leveraging remotely-sensed vegetation indices to evaluate crop coefficients and actual irrigation requirements in the water-stressed Maipo River Basin of Central Chile","authors":"Benjamin D. Goffin ,&nbsp;Rishudh Thakur ,&nbsp;Sarah Da Conceição Carlos ,&nbsp;Duncan Srsic ,&nbsp;Caroline Williams ,&nbsp;Kenton Ross ,&nbsp;Fernando Neira-Román ,&nbsp;Carlos Calvo Cortés-Monroy ,&nbsp;Venkataraman Lakshmi","doi":"10.1016/j.horiz.2022.100039","DOIUrl":null,"url":null,"abstract":"<div><p>Assessment of irrigation needs for agricultural production has commonly relied on reference crop coefficients derived using limited climatic conditions. This work focused on evaluating actual crop coefficients (Kc) by leveraging available satellite data from Landsat 8 Operational Land Imager (OLI) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS). This method built on the linear relationship and variability between reference Kc from the Food and Agricultural Organization (FAO) and specific site response in Normalized Difference Vegetation Index (NDVI). A regional model was developed for the water-stressed Maipo River Basin of Central Chile during the growing seasons of maize from 2018 to 2022. Throughout model validation, NDVI-based Kc predictions of high quality were found with R-squared scores ranging from 0.77 to 0.97. Relying on Earth observations, this approach provided site-specific Kc values and estimates of actual evapotranspiration without requiring site instruments and/or particular knowledge of farming schedules. Overall, this study has the potential to assist individuals and organizations around the world in improving irrigation management approaches, and advance precision agriculture in the context of water scarcity.</p></div>","PeriodicalId":101199,"journal":{"name":"Sustainable Horizons","volume":"4 ","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772737822000335/pdfft?md5=a39590d42e70a67aa474c4338eb5fbbf&pid=1-s2.0-S2772737822000335-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Horizons","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772737822000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Assessment of irrigation needs for agricultural production has commonly relied on reference crop coefficients derived using limited climatic conditions. This work focused on evaluating actual crop coefficients (Kc) by leveraging available satellite data from Landsat 8 Operational Land Imager (OLI) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS). This method built on the linear relationship and variability between reference Kc from the Food and Agricultural Organization (FAO) and specific site response in Normalized Difference Vegetation Index (NDVI). A regional model was developed for the water-stressed Maipo River Basin of Central Chile during the growing seasons of maize from 2018 to 2022. Throughout model validation, NDVI-based Kc predictions of high quality were found with R-squared scores ranging from 0.77 to 0.97. Relying on Earth observations, this approach provided site-specific Kc values and estimates of actual evapotranspiration without requiring site instruments and/or particular knowledge of farming schedules. Overall, this study has the potential to assist individuals and organizations around the world in improving irrigation management approaches, and advance precision agriculture in the context of water scarcity.

Abstract Image

利用遥感植被指数评估智利中部缺水的Maipo河流域作物系数和实际灌溉需求
农业生产灌溉需求的评估通常依赖于利用有限气候条件得出的参考作物系数。这项工作的重点是通过利用Landsat 8操作陆地成像仪(OLI)和Terra中分辨率成像光谱仪(MODIS)的可用卫星数据来评估实际作物系数(Kc)。该方法建立在粮农组织(FAO)参考Kc与归一化植被指数(NDVI)特定立地响应之间的线性关系和变异基础上。在2018年至2022年的玉米生长季节,为智利中部水资源紧张的Maipo河流域开发了一个区域模型。在整个模型验证过程中,发现基于ndvi的高质量Kc预测的r平方得分范围为0.77至0.97。依靠地球观测,这种方法提供了特定地点的Kc值和实际蒸散量的估计,而不需要现场仪器和/或特定的耕作计划知识。总的来说,这项研究有可能帮助世界各地的个人和组织改善灌溉管理方法,并在缺水的背景下推进精准农业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信