{"title":"Lagrangian reduction of nonholonomic discrete mechanical systems by stages","authors":"Javier Fernandez, Cora Tori, M. Zuccalli","doi":"10.3934/jgm.2020029","DOIUrl":null,"url":null,"abstract":"In this work we introduce a category $LDP_d$ of discrete-time dynamical systems, that we call discrete Lagrange--D'Alembert--Poincare systems, and study some of its elementary properties. Examples of objects of $LDP_d$ are nonholonomic discrete mechanical systems as well as their lagrangian reductions and, also, discrete Lagrange-Poincare systems. We also introduce a notion of symmetry group for objects of $LDP_d$ and a process of reduction when symmetries are present. This reduction process extends the reduction process of discrete Lagrange--Poincare systems as well as the one defined for nonholonomic discrete mechanical systems. In addition, we prove that, under some conditions, the two-stage reduction process (first by a closed and normal subgroup of the symmetry group and, then, by the residual symmetry group) produces a system that is isomorphic in $LDP_d$ to the system obtained by a one-stage reduction by the full symmetry group.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"94 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2020029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
In this work we introduce a category $LDP_d$ of discrete-time dynamical systems, that we call discrete Lagrange--D'Alembert--Poincare systems, and study some of its elementary properties. Examples of objects of $LDP_d$ are nonholonomic discrete mechanical systems as well as their lagrangian reductions and, also, discrete Lagrange-Poincare systems. We also introduce a notion of symmetry group for objects of $LDP_d$ and a process of reduction when symmetries are present. This reduction process extends the reduction process of discrete Lagrange--Poincare systems as well as the one defined for nonholonomic discrete mechanical systems. In addition, we prove that, under some conditions, the two-stage reduction process (first by a closed and normal subgroup of the symmetry group and, then, by the residual symmetry group) produces a system that is isomorphic in $LDP_d$ to the system obtained by a one-stage reduction by the full symmetry group.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.