S. Khondaker, N. A. Chowdhury, A. Mannan, A. Mamun
{"title":"Self-gravitating Envelope Solitons in Astrophysical Objects","authors":"S. Khondaker, N. A. Chowdhury, A. Mannan, A. Mamun","doi":"10.22606/TP.2018.34004","DOIUrl":null,"url":null,"abstract":"The propagation of ion-acoustic waves (IAWs) in a collisionless unmagnetized selfgravitating degenerate quantum plasma system (SG-DQPS) has been studied theoretically for the first time. A nonlinear Schrödinger equation is derived by using the reductive perturbation method to study the nonlinear dynamics of the IAWs in the SG-DQPS. It is found that for kc > k (kc < k) (where kc is critical value of the propagation constant k which determines the stable and unstable region of IAWs) the IAWs are modulationally unstable (stable), and that kc depends on the ratio of the electron number density to light ion number density. It is also observed that the self-gravitating bright envelope solitons are modulationally stable. The results obtained from our present investigation are useful for understanding the nonlinear propagation of the IAWs in astrophysical compact objects like white dwarfs and neutron stars.","PeriodicalId":49658,"journal":{"name":"Progress of Theoretical Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22606/TP.2018.34004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The propagation of ion-acoustic waves (IAWs) in a collisionless unmagnetized selfgravitating degenerate quantum plasma system (SG-DQPS) has been studied theoretically for the first time. A nonlinear Schrödinger equation is derived by using the reductive perturbation method to study the nonlinear dynamics of the IAWs in the SG-DQPS. It is found that for kc > k (kc < k) (where kc is critical value of the propagation constant k which determines the stable and unstable region of IAWs) the IAWs are modulationally unstable (stable), and that kc depends on the ratio of the electron number density to light ion number density. It is also observed that the self-gravitating bright envelope solitons are modulationally stable. The results obtained from our present investigation are useful for understanding the nonlinear propagation of the IAWs in astrophysical compact objects like white dwarfs and neutron stars.