Meta-Bandit: Spatial Reuse Adaptation via Meta-Learning in Distributed Wi-Fi 802.11ax

Pedro Enrique Iturria-Rivera;Marcel Chenier;Bernard Herscovici;Burak Kantarci;Melike Erol-Kantarci
{"title":"Meta-Bandit: Spatial Reuse Adaptation via Meta-Learning in Distributed Wi-Fi 802.11ax","authors":"Pedro Enrique Iturria-Rivera;Marcel Chenier;Bernard Herscovici;Burak Kantarci;Melike Erol-Kantarci","doi":"10.1109/LNET.2023.3268648","DOIUrl":null,"url":null,"abstract":"IEEE 802.11ax introduces several amendments to previous standards with a special interest in spatial reuse (SR) to respond to dense user scenarios with high demanding services. In dynamic scenarios with more than one Access Point, the adjustment of joint Transmission Power (TP) and Clear Channel Assessment (CCA) threshold remains a challenge. With the aim of mitigating Quality of Service (QoS) degradation, we introduce a solution that builds on meta-learning and multi-arm bandits. Simulation results show that the proposed solution can adapt with an average of 1250 fewer environment steps and 72% average improvement in terms of fairness and starvation than a transfer learning baseline.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"179-183"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10105943","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10105943/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

IEEE 802.11ax introduces several amendments to previous standards with a special interest in spatial reuse (SR) to respond to dense user scenarios with high demanding services. In dynamic scenarios with more than one Access Point, the adjustment of joint Transmission Power (TP) and Clear Channel Assessment (CCA) threshold remains a challenge. With the aim of mitigating Quality of Service (QoS) degradation, we introduce a solution that builds on meta-learning and multi-arm bandits. Simulation results show that the proposed solution can adapt with an average of 1250 fewer environment steps and 72% average improvement in terms of fairness and starvation than a transfer learning baseline.
元带宽:在分布式 Wi-Fi 802.11ax 中通过元学习实现空间重用自适应
IEEE 802.11ax 对以前的标准进行了多项修订,特别关注空间重用 (SR),以应对高密度用户场景对服务的高要求。在有一个以上接入点的动态场景中,联合传输功率(TP)和净信道评估(CCA)阈值的调整仍然是一个挑战。为了缓解服务质量(QoS)下降,我们引入了一种基于元学习和多臂匪帮的解决方案。仿真结果表明,与转移学习基线相比,所提出的解决方案平均减少了 1250 个环境步数,在公平性和饥饿方面平均提高了 72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信