{"title":"A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.","authors":"Suvra Pal, Yingwei Peng, Wisdom Aselisewine","doi":"10.1007/s00180-023-01389-7","DOIUrl":null,"url":null,"abstract":"<p><p>We consider interval censored data with a cured subgroup that arises from longitudinal followup studies with a heterogeneous population where a certain proportion of subjects is not susceptible to the event of interest. We propose a two component mixture cure model, where the first component describing the probability of cure is modeled by a support vector machine-based approach and the second component describing the survival distribution of the uncured group is modeled by a proportional hazard structure. Our proposed model provides flexibility in capturing complex effects of covariates on the probability of cure unlike the traditional models that rely on modeling the cure probability using a generalized linear model with a known link function. For the estimation of model parameters, we develop an expectation maximization-based estimation algorithm. We conduct simulation studies and show that our proposed model performs better in capturing complex effects of covariates on the cure probability when compared to the traditional logit link-based two component mixture cure model. This results in more accurate (smaller bias) and precise (smaller mean square error) estimates of the cure probabilities, which in-turn improves the predictive accuracy of the latent cured status. We further show that our model's ability to capture complex covariate effects also improves the estimation results corresponding to the survival distribution of the uncured. Finally, we apply the proposed model and estimation procedure to an interval censored data on smoking cessation.</p>","PeriodicalId":47751,"journal":{"name":"Environment and Development Economics","volume":"7 1","pages":"2743-2769"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Development Economics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01389-7","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider interval censored data with a cured subgroup that arises from longitudinal followup studies with a heterogeneous population where a certain proportion of subjects is not susceptible to the event of interest. We propose a two component mixture cure model, where the first component describing the probability of cure is modeled by a support vector machine-based approach and the second component describing the survival distribution of the uncured group is modeled by a proportional hazard structure. Our proposed model provides flexibility in capturing complex effects of covariates on the probability of cure unlike the traditional models that rely on modeling the cure probability using a generalized linear model with a known link function. For the estimation of model parameters, we develop an expectation maximization-based estimation algorithm. We conduct simulation studies and show that our proposed model performs better in capturing complex effects of covariates on the cure probability when compared to the traditional logit link-based two component mixture cure model. This results in more accurate (smaller bias) and precise (smaller mean square error) estimates of the cure probabilities, which in-turn improves the predictive accuracy of the latent cured status. We further show that our model's ability to capture complex covariate effects also improves the estimation results corresponding to the survival distribution of the uncured. Finally, we apply the proposed model and estimation procedure to an interval censored data on smoking cessation.
期刊介绍:
Environment and Development Economics is positioned at the intersection of environmental, resource and development economics. The Editor and Associate Editors, supported by a distinguished panel of advisors from around the world, aim to encourage submissions from researchers in the field in both developed and developing countries. The Journal is divided into two main sections, Theory and Applications, which includes regular academic papers and Policy Options, which includes papers that may be of interest to the wider policy community. Environment and Development Economics also publishes occasional Policy Fora (discussions based on a focal paper). From time to time the journal publishes special issues based on a particular theme.