{"title":"On the Hochstadt–Lieberman theorem for the fourth-order binomial operator","authors":"Lu Chen, Guoliang Shi, Jun Yan","doi":"10.1063/5.0107145","DOIUrl":null,"url":null,"abstract":"A method of recovering the potential of the fourth-order binomial operator on a half-interval [1/2, 1] using a known potential on another half-interval [0, 1/2] and the eigenvalues of the self-adjoint boundary problem on the whole interval [0, 1] is proposed.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"3 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0107145","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
A method of recovering the potential of the fourth-order binomial operator on a half-interval [1/2, 1] using a known potential on another half-interval [0, 1/2] and the eigenvalues of the self-adjoint boundary problem on the whole interval [0, 1] is proposed.
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.