COMPARISON OF SPLIT WINDOWS ALGORITHM AND PLANCK METHODS FOR SURFACE TEMPERATURE ESTIMATION BASED ON REMOTE SENSING DATA IN SEMARANG

Siti Zahrotunisa, P. Danoedoro, S. Arjasakusuma
{"title":"COMPARISON OF SPLIT WINDOWS ALGORITHM AND PLANCK METHODS FOR SURFACE TEMPERATURE ESTIMATION BASED ON REMOTE SENSING DATA IN SEMARANG","authors":"Siti Zahrotunisa, P. Danoedoro, S. Arjasakusuma","doi":"10.24114/JG.V14I1.24603","DOIUrl":null,"url":null,"abstract":"Surface temperature is one of the parameters in land–surface physical processes and is applied to global warming, climate change, and cycle hydrology. Two thermal bands in Landsat 8 imagery can be used as input for surface temperature extraction using the Split Windows Algorithm (SWA) and Planck method. This study aims to compare surface temperature estimates using the SWA and Planck methods and determine the surface temperature distribution based on the condition of land cover and its changes. The remote sensing data used are Landsat-8 OLI/TIRS Aqua MODIS images on August 27, 2013, and October 1, 2020. The results showed that Landsat 8 could obtain land cover information with an accuracy of 90% in 2013 and 91% in 2020. Planck surface temperature in 2013 was 1-3°C higher than SWA, while in 2020, Planck was 0.001-0.05°C lower than SWA but had similar distribution and pattern. The vegetation in the study area's central and south sides has a lower surface temperature than the built-up area on the north side. Land cover changes from non-built up to build-up area cause surface temperatures to increase. Each land cover has a different emissivity value and affects the surface temperature value, i.e., the lower the emissivity, the higher the surface temperature. The emissivity with surface temperature has a pearson correlation value ≥-0.8**.Keywords: Surface Temperature, Split Windows Algorithm, Planck","PeriodicalId":31787,"journal":{"name":"Jurnal Geografi","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Geografi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/JG.V14I1.24603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Surface temperature is one of the parameters in land–surface physical processes and is applied to global warming, climate change, and cycle hydrology. Two thermal bands in Landsat 8 imagery can be used as input for surface temperature extraction using the Split Windows Algorithm (SWA) and Planck method. This study aims to compare surface temperature estimates using the SWA and Planck methods and determine the surface temperature distribution based on the condition of land cover and its changes. The remote sensing data used are Landsat-8 OLI/TIRS Aqua MODIS images on August 27, 2013, and October 1, 2020. The results showed that Landsat 8 could obtain land cover information with an accuracy of 90% in 2013 and 91% in 2020. Planck surface temperature in 2013 was 1-3°C higher than SWA, while in 2020, Planck was 0.001-0.05°C lower than SWA but had similar distribution and pattern. The vegetation in the study area's central and south sides has a lower surface temperature than the built-up area on the north side. Land cover changes from non-built up to build-up area cause surface temperatures to increase. Each land cover has a different emissivity value and affects the surface temperature value, i.e., the lower the emissivity, the higher the surface temperature. The emissivity with surface temperature has a pearson correlation value ≥-0.8**.Keywords: Surface Temperature, Split Windows Algorithm, Planck
拆分窗口算法与普朗克方法在三元村遥感地表温度估算中的比较
地表温度是地表物理过程的参数之一,在全球变暖、气候变化、循环水文等方面都有应用。Landsat 8图像中的两个热波段可以作为输入,使用分割窗算法(SWA)和普朗克方法提取地表温度。本研究的目的是比较SWA和Planck方法估算的地表温度,确定基于土地覆盖状况及其变化的地表温度分布。使用的遥感数据是2013年8月27日和2020年10月1日的Landsat-8 OLI/TIRS Aqua MODIS图像。结果表明,2013年Landsat 8获取土地覆盖信息的精度为90%,2020年为91%。2013年普朗克表面温度比SWA高1 ~ 3°C, 2020年普朗克表面温度比SWA低0.001 ~ 0.05°C,但分布和格局相似。研究区中南侧植被的地表温度低于北侧建成区。土地覆盖从未建地到建地的变化导致地表温度升高。不同的地表覆盖具有不同的发射率值,并对地表温度值产生影响,即发射率越低地表温度越高。发射率与表面温度的pearson相关值≥-0.8**。关键词:表面温度,分窗算法,普朗克
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信