{"title":"Improving the Fatigue Performance of Welded Tubular Connections via Flared and Thickened Pipe Ends","authors":"G. Mansour","doi":"10.4043/31165-ms","DOIUrl":null,"url":null,"abstract":"\n Fatigue is a primary challenge in the design of steel catenary risers (SCRs) and different measures and methods are utilized to mitigate it. Traditional upset ends and steel lazy wave risers (SLWRs) are such methods to mitigate fatigue.\n SLWRs were first used in 2009 on the Espirito Santo floating, production, storage, and offloading (FPSO) vessel of Shell Company's Parque das Conchas (BC-10) project offshore Brazil. SLWRs have been used increasingly since then and gained popularity especially in recent years.\n A novel patented tubular connection assembly referred to as Flared Thickened Ends (FTEs) improves the fatigue life of SCRs and welded connections in general. This novel assembly has many advantages. It overcomes the thickness limitation of welding traditional upset ends and reduces offshore welding time, cost, and risk.\n When FTEs are used in simple SCRs, they render simple SCRs a robustly viable alternative at significantly lower cost, shorter schedule, and with many additional advantages as compared to SLWRs. Of the many advantages, simple SCRs are more straightforward to configure, analyze, design, and install using varied installation methods and vessels. Simple SCRs use less materials and offer better long-term integrity, especially for insulated SCRs. In addition, they have a smaller footprint and are less prone to clashing than SLWRs.","PeriodicalId":11184,"journal":{"name":"Day 3 Wed, August 18, 2021","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, August 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31165-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fatigue is a primary challenge in the design of steel catenary risers (SCRs) and different measures and methods are utilized to mitigate it. Traditional upset ends and steel lazy wave risers (SLWRs) are such methods to mitigate fatigue.
SLWRs were first used in 2009 on the Espirito Santo floating, production, storage, and offloading (FPSO) vessel of Shell Company's Parque das Conchas (BC-10) project offshore Brazil. SLWRs have been used increasingly since then and gained popularity especially in recent years.
A novel patented tubular connection assembly referred to as Flared Thickened Ends (FTEs) improves the fatigue life of SCRs and welded connections in general. This novel assembly has many advantages. It overcomes the thickness limitation of welding traditional upset ends and reduces offshore welding time, cost, and risk.
When FTEs are used in simple SCRs, they render simple SCRs a robustly viable alternative at significantly lower cost, shorter schedule, and with many additional advantages as compared to SLWRs. Of the many advantages, simple SCRs are more straightforward to configure, analyze, design, and install using varied installation methods and vessels. Simple SCRs use less materials and offer better long-term integrity, especially for insulated SCRs. In addition, they have a smaller footprint and are less prone to clashing than SLWRs.
疲劳是钢悬链线立管(scr)设计的主要挑战,采用了不同的措施和方法来减轻疲劳。传统的加厚端部和钢制懒波立管(SLWRs)就是缓解疲劳的方法。SLWRs于2009年首次应用于壳牌公司位于巴西海上的Parque das Conchas (BC-10)项目的Espirito Santo浮式、生产、储存和卸载(FPSO)船。自那时以来,slwr的使用越来越多,特别是近年来越来越受欢迎。一种新型的专利管连接组件,称为喇叭加厚端(fte),总体上提高了scr和焊接连接的疲劳寿命。这种新颖的装配有许多优点。它克服了传统镦粗端焊缝的厚度限制,降低了海上焊接的时间、成本和风险。当fte用于简单的scr时,与slwr相比,它们使简单的scr成为一种可靠可行的替代方案,成本显著降低,工期更短,并且具有许多其他优势。在众多优点中,简单的scr更容易配置、分析、设计和安装,使用各种安装方法和容器。简单的可控硅使用较少的材料,并提供更好的长期完整性,特别是绝缘可控硅。此外,它们的占用空间更小,并且比SLWRs更不容易发生冲突。