Precise intermittency for the parabolic Anderson equation with an $(1+1)$-dimensional time–space white noise

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Xia Chen
{"title":"Precise intermittency for the parabolic Anderson equation with an $(1+1)$-dimensional time–space white noise","authors":"Xia Chen","doi":"10.1214/15-AIHP673","DOIUrl":null,"url":null,"abstract":"The moment Lyapunov exponent is computed for the solution of the parabolic Anderson equation with an (1 + 1)dimensional time–space white noise. Our main result positively confirms an open problem posted in (Ann. Probab. (2015) to appear) and originated from the observations made in the physical literature (J. Statist. Phys. 78 (1995) 1377–1401) and (Nuclear Physics B 290 (1987) 582–602). By a link through the Feynman–Kac’s formula, our theorem leads to the evaluation of the ground state energy for the n-body problem with Dirac pair interaction. Résumé. Nous calculons les moments de l’exposant de Lyapunov de la solution de l’équation d’Anderson parabolique avec un bruit blanc en espace–temps en dimension (1 + 1). Notre résultat principal confirme un problème ouvert posé dans (Ann. Probab. (2015) à paraître) et basé sur des observations faites dans la littérature physique (J. Statist. Phys. 78 (1995) 1377–1401) et (Nuclear Physics B 290 (1987) 582–602). À travers la formule de Feynman–Kac, notre théorème permet l’évaluation de l’état fondamental pour le problème à n-corps avec interaction de Dirac par paires. MSC: 60F10; 60H15; 60H40; 60J65; 81U10","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"24 1","pages":"1486-1499"},"PeriodicalIF":1.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP673","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 50

Abstract

The moment Lyapunov exponent is computed for the solution of the parabolic Anderson equation with an (1 + 1)dimensional time–space white noise. Our main result positively confirms an open problem posted in (Ann. Probab. (2015) to appear) and originated from the observations made in the physical literature (J. Statist. Phys. 78 (1995) 1377–1401) and (Nuclear Physics B 290 (1987) 582–602). By a link through the Feynman–Kac’s formula, our theorem leads to the evaluation of the ground state energy for the n-body problem with Dirac pair interaction. Résumé. Nous calculons les moments de l’exposant de Lyapunov de la solution de l’équation d’Anderson parabolique avec un bruit blanc en espace–temps en dimension (1 + 1). Notre résultat principal confirme un problème ouvert posé dans (Ann. Probab. (2015) à paraître) et basé sur des observations faites dans la littérature physique (J. Statist. Phys. 78 (1995) 1377–1401) et (Nuclear Physics B 290 (1987) 582–602). À travers la formule de Feynman–Kac, notre théorème permet l’évaluation de l’état fondamental pour le problème à n-corps avec interaction de Dirac par paires. MSC: 60F10; 60H15; 60H40; 60J65; 81U10
具有$(1+1)$维时空白噪声的抛物型安德森方程的精确间歇性
计算了具有(1 + 1)维时空白噪声的抛物型安德森方程的矩Lyapunov指数。我们的主要结果肯定地证实了(Ann)发表的一个开放问题。Probab。(2015)出现),并起源于物理文献中的观察(J. Statist。物理78(1995)1377-1401)和(核物理B 290(1987) 582-602)。通过费曼-卡茨公式的链接,我们的定理导致了具有狄拉克对相互作用的n体问题的基态能量的评估。的简历。李雅普(Lyapunov)给出了一种解,即在1 + 1维(1 + 1)的情况下求得了一种解,即在1 + 1维(1 + 1)的情况下求得了一种解。Probab。(2015) [j] .统计学家。物理78(1995)1377-1401)和(核物理B 290(1987) 582-602)。À通过费曼-卡茨公式,我们可以得到:1 . 问题; 1 . 问题; 2 .与狄拉克对等体的相互作用。MSC: 60 f10;60 h15;60 h40;60 j65;81年u10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信