Partitioned Design Matrix Method for Two Factors Multivariate Design

IF 1.1 Q3 STATISTICS & PROBABILITY
Renny Alvionita, S. Nugroho, M. Chozin
{"title":"Partitioned Design Matrix Method for Two Factors Multivariate Design","authors":"Renny Alvionita, S. Nugroho, M. Chozin","doi":"10.33369/jsds.v1i1.21010","DOIUrl":null,"url":null,"abstract":"Factorial experiment often involves large data sets and the use of generalized inverse for the data analysis. It becomes less manageable as the data increased. The objective of this study is to evaluate the accuracy of partitioned design matrix method for two factors multivariate design. The design matrix is partitioned into several sub-matrices based on their source of variation. The partitioned design matrix method in two factors multivariate is much simpler than usual sigma summation method in calculating the sum of product matrix and the degrees of freedom. This method could also be used in explaining the derivation of the statistics for testing the hypothesis of the equality of the means which corresponds to the source of variation.","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33369/jsds.v1i1.21010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Factorial experiment often involves large data sets and the use of generalized inverse for the data analysis. It becomes less manageable as the data increased. The objective of this study is to evaluate the accuracy of partitioned design matrix method for two factors multivariate design. The design matrix is partitioned into several sub-matrices based on their source of variation. The partitioned design matrix method in two factors multivariate is much simpler than usual sigma summation method in calculating the sum of product matrix and the degrees of freedom. This method could also be used in explaining the derivation of the statistics for testing the hypothesis of the equality of the means which corresponds to the source of variation.
两因素多元设计的分块设计矩阵法
析因实验通常涉及大数据集,并使用广义逆法对数据进行分析。随着数据的增加,它变得越来越难以管理。本研究的目的是评估分割设计矩阵法在两因素多变量设计中的准确性。设计矩阵根据其变异源划分为若干子矩阵。两因素多元分割设计矩阵法在计算乘积矩阵与自由度之和方面比一般的求和法简单得多。这种方法也可用于解释统计量的推导,以检验与变异源相对应的均值相等的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信