Remarks on the Periodic Conformable Sturm-Liouville Problems

Wei-Chuan Wang
{"title":"Remarks on the Periodic Conformable Sturm-Liouville Problems","authors":"Wei-Chuan Wang","doi":"10.1155/2023/7656491","DOIUrl":null,"url":null,"abstract":"<jats:p>The conformable Sturm–Liouville problem (CSLP), <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mo>−</mo>\n <msup>\n <mrow>\n <mi>x</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>p</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <msup>\n <mrow>\n <mi>x</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mi>y</mi>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>λ</mi>\n <mi>ρ</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>−</mo>\n <mi>q</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n <mi>y</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mn>0</mn>\n <mo><</mo>\n <mi>α</mi>\n <mo>≤</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>, is studied under some certain conditions on the coefficients <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>p</mi>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>ρ</mi>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>q</mi>\n </math>\n </jats:inline-formula>. According to an interesting idea proposed by P. Binding and H. Volkmer [Binding et al., 2012, Binding et al., 2013], we will derive how to reduce the periodic or antiperiodic (CSLP) to an analysis of the Prüfer angle. The eigenvalue interlacing property related to (CSLP) will be given.</jats:p>","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"95 1","pages":"7656491:1-7656491:6"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7656491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conformable Sturm–Liouville problem (CSLP), x 1 α p x x 1 α y x = λ ρ x q x y x , for 0 < α 1 , is studied under some certain conditions on the coefficients p , ρ , and q . According to an interesting idea proposed by P. Binding and H. Volkmer [Binding et al., 2012, Binding et al., 2013], we will derive how to reduce the periodic or antiperiodic (CSLP) to an analysis of the Prüfer angle. The eigenvalue interlacing property related to (CSLP) will be given.
关于周期适形Sturm-Liouville问题的评述
适形Sturm-Liouville问题,−x 1−α pX X 1−α y′X ' =λ ρ x−qX y X,对于0 α≤1,在一定条件下研究了系数p, ρ,q。根据P. Binding和H. Volkmer [Binding et al., 2012, Binding et al., 2013]提出的一个有趣的想法,我们将推导出如何将周期或反周期(CSLP)降约为对pr fer角的分析。给出了与(CSLP)相关的特征值交错性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信