{"title":"Method of Attention-Based CNN for Weighing Pleurotus eryngii","authors":"Junmin Jia, Fei Hu, Xubo Zhang, Zongyou Ben, Yifan Wang, Kunjie Chen","doi":"10.3390/agriculture13091728","DOIUrl":null,"url":null,"abstract":"Automatic weight detection is an essential step in the factory production of Pleurotus eryngii. In this study, a data set containing 1154 Pleurotus eryngii images was created, and then machine vision technology was used to extract eight two-dimensional features from the images. Because the fruiting bodies of Pleurotus eryngii have different shapes, these features were less correlated with weight. This paper proposed a multidimensional feature derivation method and an Attention-Based CNN model to solve this problem. This study aimed to realize the traditional feature screening task by deep learning algorithms and built an estimation model. Compared with different regression algorithms, the R2, RMSE, MAE, and MAPE of the Attention-Based CNN were 0.971, 7.77, 5.69, and 5.87%, respectively, and showed the best performance. Therefore, it can be used as an accurate, objective, and effective method for automatic weight measurements of Pleurotus eryngii.","PeriodicalId":48587,"journal":{"name":"Agriculture-Basel","volume":"114 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agriculture13091728","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic weight detection is an essential step in the factory production of Pleurotus eryngii. In this study, a data set containing 1154 Pleurotus eryngii images was created, and then machine vision technology was used to extract eight two-dimensional features from the images. Because the fruiting bodies of Pleurotus eryngii have different shapes, these features were less correlated with weight. This paper proposed a multidimensional feature derivation method and an Attention-Based CNN model to solve this problem. This study aimed to realize the traditional feature screening task by deep learning algorithms and built an estimation model. Compared with different regression algorithms, the R2, RMSE, MAE, and MAPE of the Attention-Based CNN were 0.971, 7.77, 5.69, and 5.87%, respectively, and showed the best performance. Therefore, it can be used as an accurate, objective, and effective method for automatic weight measurements of Pleurotus eryngii.
期刊介绍:
Agriculture (ISSN 2077-0472) is an international and cross-disciplinary scholarly and scientific open access journal on the science of cultivating the soil, growing, harvesting crops, and raising livestock. We will aim to look at production, processing, marketing and use of foods, fibers, plants and animals. The journal Agriculturewill publish reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.