Optimization of Convolutional Neural Networks on Resource Constrained Devices

Arish S, Sharad Sinha, S. K G
{"title":"Optimization of Convolutional Neural Networks on Resource Constrained Devices","authors":"Arish S, Sharad Sinha, S. K G","doi":"10.1109/ISVLSI.2019.00013","DOIUrl":null,"url":null,"abstract":"Implementation of convolutional neural networks (CNNs) on resource constrained devices like FPGA (example: Zynq) etc. is important for intelligence in edge computing. This paper presents and discusses different hardware optimization methods that were employed to design a CNN model that is amenable to such devices, in general. Adaptive processing, exploitation of parallelism etc. are employed to show the superior performance of proposed methods over state of the art.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"26 1","pages":"19-24"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Implementation of convolutional neural networks (CNNs) on resource constrained devices like FPGA (example: Zynq) etc. is important for intelligence in edge computing. This paper presents and discusses different hardware optimization methods that were employed to design a CNN model that is amenable to such devices, in general. Adaptive processing, exploitation of parallelism etc. are employed to show the superior performance of proposed methods over state of the art.
资源受限设备上卷积神经网络的优化
卷积神经网络(cnn)在FPGA(例如:Zynq)等资源受限设备上的实现对于边缘计算中的智能非常重要。本文提出并讨论了不同的硬件优化方法,用于设计一般适用于此类设备的CNN模型。采用自适应处理、利用并行性等来显示所提出的方法优于现有技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信