Topological functors and right adjoints

Harvey Wolff
{"title":"Topological functors and right adjoints","authors":"Harvey Wolff","doi":"10.1016/0016-660X(78)90054-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>T</em>:<span><math><mtext>A</mtext></math></span> → <span><math><mtext>L</mtext></math></span> be an (<span><math><mtext>L</mtext></math></span>, <span><math><mtext>M</mtext></math></span>)-topological functor and <em>S</em>:<span><math><mtext>B</mtext></math></span> → <span><math><mtext>Y</mtext></math></span> a faithful functor. Let <em>F</em>:<span><math><mtext>L</mtext></math></span> → <span><math><mtext>Y</mtext></math></span> and <em>L</em>:<span><math><mtext>A</mtext></math></span> → <span><math><mtext>B</mtext></math></span> be functors with <em>a</em>:<em>FT</em> → <em>SL</em> an epi natural transformation. We are concerned with the question of when <em>L</em> has a right adjoint given that <em>F</em> has a right adjoint. We give two characterizations of the existence of a right adjoint to <em>L</em>. One involves just the “topological data” and the other is an application of Freyd's adjoint functor theorem. As a consequence, we characterize when a category which is monoidal and (<span><math><mtext>L</mtext></math></span>, <span><math><mtext>M</mtext></math></span>)-topological over a monoidal closed category is also closed.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 2","pages":"Pages 101-110"},"PeriodicalIF":0.0000,"publicationDate":"1978-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90054-5","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let T:AL be an (L, M)-topological functor and S:BY a faithful functor. Let F:LY and L:AB be functors with a:FTSL an epi natural transformation. We are concerned with the question of when L has a right adjoint given that F has a right adjoint. We give two characterizations of the existence of a right adjoint to L. One involves just the “topological data” and the other is an application of Freyd's adjoint functor theorem. As a consequence, we characterize when a category which is monoidal and (L, M)-topological over a monoidal closed category is also closed.

拓扑函子和右伴随
设T:A→L是一个(L, M)拓扑函子,S:B→Y是一个忠实函子。设F:L→Y和L:A→B是具有A:FT→SL和外延自然变换的函子。我们关心的问题是当L有右伴随时假设F有右伴随。我们给出了l的右伴随存在的两个刻画,一个只涉及“拓扑数据”,另一个是fred伴随函子定理的一个应用。因此,我们刻画了当一个一元闭范畴上的(L, M)-拓扑范畴也是闭范畴时的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信