{"title":"Tailoring Nano-Textures for Optimized Light In-Coupling in Liquid Phase Crystallized Silicon Thin-Film Solar Cells","authors":"G. Köppel, D. Eisenhauer, B. Rech, C. Becker","doi":"10.1002/PSSC.201700175","DOIUrl":null,"url":null,"abstract":"Thin-film solar cells based on liquid phase crystallized silicon (LPC Si) with 8–20 μm thick absorber layers demand for advanced light management to achieve high photocurrent densities. Open-circuit voltages (Voc) >600 mV underline the high silicon material quality of LPC silicon thin-films on nano-textured glass superstrates. We present a 500 nm-pitched sinusoidal nano-texture which outperforms larger pitched gratings with respect to light in-coupling at the buried glass-silicon interface. In the wavelength range of interest reflection of incident light is minimized to values close to 4%, which is the reflection at the sun-facing air-glass interface. Further, the electronic material quality of sinusoidally textured devices is analyzed on basis of a comparison of maximum achieved open-circuit voltages on different texture types. The Voc on sinusoidally textured glass superstrates could be raised to 630 mV by changing the interlayer deposition method from a PVD to a PECVD process. Thus, we are able to unify high optical and electronic properties of silicon absorber layers on sinusoidaly textured glass substrates. These results constitute a crucial step toward fully exploiting the optical potential of LPC silicon thin-film solar cells.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Thin-film solar cells based on liquid phase crystallized silicon (LPC Si) with 8–20 μm thick absorber layers demand for advanced light management to achieve high photocurrent densities. Open-circuit voltages (Voc) >600 mV underline the high silicon material quality of LPC silicon thin-films on nano-textured glass superstrates. We present a 500 nm-pitched sinusoidal nano-texture which outperforms larger pitched gratings with respect to light in-coupling at the buried glass-silicon interface. In the wavelength range of interest reflection of incident light is minimized to values close to 4%, which is the reflection at the sun-facing air-glass interface. Further, the electronic material quality of sinusoidally textured devices is analyzed on basis of a comparison of maximum achieved open-circuit voltages on different texture types. The Voc on sinusoidally textured glass superstrates could be raised to 630 mV by changing the interlayer deposition method from a PVD to a PECVD process. Thus, we are able to unify high optical and electronic properties of silicon absorber layers on sinusoidaly textured glass substrates. These results constitute a crucial step toward fully exploiting the optical potential of LPC silicon thin-film solar cells.