Aikai Yang , Kai Yao , Mareen Schaller , Enkhtsetseg Dashjav , Hang Li , Shuo Zhao , Qiu Zhang , Martin Etter , Xingchen Shen , Huimin Song , Qiongqiong Lu , Ruijie Ye , Igor Moudrakovski , Quanquan Pang , Sylvio Indris , Xingchao Wang , Qianli Ma , Frank Tietz , Jun Chen , Olivier Guillon
{"title":"Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12","authors":"Aikai Yang , Kai Yao , Mareen Schaller , Enkhtsetseg Dashjav , Hang Li , Shuo Zhao , Qiu Zhang , Martin Etter , Xingchen Shen , Huimin Song , Qiongqiong Lu , Ruijie Ye , Igor Moudrakovski , Quanquan Pang , Sylvio Indris , Xingchao Wang , Qianli Ma , Frank Tietz , Jun Chen , Olivier Guillon","doi":"10.1016/j.esci.2023.100175","DOIUrl":null,"url":null,"abstract":"<div><p>Developing cost-effective and reliable solid-state sodium batteries with superior performance is crucial for stationary energy storage. A key component in facilitating their application is a solid-state electrolyte with high conductivity and stability. Herein, we employed aliovalent cation substitution to enhance ionic conductivity while preserving the crystal structure. Optimized substitution of Y<sup>3+</sup> with Zr<sup>4+</sup> in Na<sub>5</sub>YSi<sub>4</sub>O<sub>12</sub> introduced Na<sup>+</sup> ion vacancies, resulting in high bulk and total conductivities of up to 6.5 and 3.3 mS cm<sup>−1</sup>, respectively, at room temperature with the composition Na<sub>4.92</sub>Y<sub>0.92</sub>Zr<sub>0.08</sub>Si<sub>4</sub>O<sub>12</sub> (NYZS). NYZS shows exceptional electrochemical stability (up to 10 V <em>vs</em>. Na<sup>+</sup>/Na), favorable interfacial compatibility with Na, and an excellent critical current density of 2.4 mA cm<sup>−2</sup>. The enhanced conductivity of Na<sup>+</sup> ions in NYZS was elucidated using solid-state nuclear magnetic resonance techniques and theoretical simulations, revealing two migration routes facilitated by the synergistic effect of increased Na<sup>+</sup> ion vacancies and improved chemical environment due to Zr<sup>4+</sup> substitution. NYZS extends the list of suitable solid-state electrolytes and enables the facile synthesis of stable, low-cost Na<sup>+</sup> ion silicate electrolytes.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100175"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001131/pdfft?md5=cb33c7375e12888a74d10f0c49cb1fa4&pid=1-s2.0-S2667141723001131-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing cost-effective and reliable solid-state sodium batteries with superior performance is crucial for stationary energy storage. A key component in facilitating their application is a solid-state electrolyte with high conductivity and stability. Herein, we employed aliovalent cation substitution to enhance ionic conductivity while preserving the crystal structure. Optimized substitution of Y3+ with Zr4+ in Na5YSi4O12 introduced Na+ ion vacancies, resulting in high bulk and total conductivities of up to 6.5 and 3.3 mS cm−1, respectively, at room temperature with the composition Na4.92Y0.92Zr0.08Si4O12 (NYZS). NYZS shows exceptional electrochemical stability (up to 10 V vs. Na+/Na), favorable interfacial compatibility with Na, and an excellent critical current density of 2.4 mA cm−2. The enhanced conductivity of Na+ ions in NYZS was elucidated using solid-state nuclear magnetic resonance techniques and theoretical simulations, revealing two migration routes facilitated by the synergistic effect of increased Na+ ion vacancies and improved chemical environment due to Zr4+ substitution. NYZS extends the list of suitable solid-state electrolytes and enables the facile synthesis of stable, low-cost Na+ ion silicate electrolytes.
开发经济、可靠、性能优越的固态钠电池是固定式储能的关键。促进其应用的关键因素是具有高导电性和稳定性的固态电解质。在这里,我们采用共价阳离子取代来提高离子电导率,同时保持晶体结构。在Na5YSi4O12中,通过优化Zr4+取代Y3+,引入Na+离子空位,在室温下获得了高的体积和总电导率,分别高达6.5和3.3 mS cm−1,组成为Na4.92Y0.92Zr0.08Si4O12 (NYZS)。NYZS具有优异的电化学稳定性(高达10 V vs. Na+/Na),与Na具有良好的界面相容性,临界电流密度为2.4 mA cm−2。利用固态核磁共振技术和理论模拟分析了Na+离子在NYZS中的电导率增强,揭示了Zr4+取代导致Na+离子空位增加和化学环境改善的协同作用促进了两条迁移途径。NYZS扩展了合适的固态电解质的列表,并能够轻松合成稳定,低成本的Na+离子硅酸盐电解质。