Sorting probability for large Young diagrams

Swee Hong Chan, I. Pak, G. Panova
{"title":"Sorting probability for large Young diagrams","authors":"Swee Hong Chan, I. Pak, G. Panova","doi":"10.19086/da.30071","DOIUrl":null,"url":null,"abstract":"For a finite poset $P=(X,\\prec)$, let $\\mathcal{L}_P$ denote the set of linear extensions of $P$. The sorting probability $\\delta(P)$ is defined as \n\\[\\delta(P) \\, := \\, \\min_{x,y\\in X} \\, \\bigl| \\mathbf{P} \\, [L(x)\\leq L(y) ] \\ - \\ \\mathbf{P} \\, [L(y)\\leq L(x) ] \\bigr|\\,, \\] where $L \\in \\mathcal{L}_P$ is a uniform linear extension of $P$. We give asymptotic upper bounds on sorting probabilities for posets associated with large Young diagrams and large skew Young diagrams, with bounded number of rows.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/da.30071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

For a finite poset $P=(X,\prec)$, let $\mathcal{L}_P$ denote the set of linear extensions of $P$. The sorting probability $\delta(P)$ is defined as \[\delta(P) \, := \, \min_{x,y\in X} \, \bigl| \mathbf{P} \, [L(x)\leq L(y) ] \ - \ \mathbf{P} \, [L(y)\leq L(x) ] \bigr|\,, \] where $L \in \mathcal{L}_P$ is a uniform linear extension of $P$. We give asymptotic upper bounds on sorting probabilities for posets associated with large Young diagrams and large skew Young diagrams, with bounded number of rows.
大型杨氏图的排序概率
对于一个有限偏序集$P=(X,\prec)$,设$\mathcal{L}_P$表示$P$的线性扩展集。排序概率$\delta(P)$定义为\[\delta(P) \, := \, \min_{x,y\in X} \, \bigl| \mathbf{P} \, [L(x)\leq L(y) ] \ - \ \mathbf{P} \, [L(y)\leq L(x) ] \bigr|\,, \],其中$L \in \mathcal{L}_P$是$P$的统一线性扩展。对于行数有限的大杨图和大斜杨图,给出了序集排序概率的渐近上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信