SIMPLY CONNECTED MANIFOLDS WITH LARGE HOMOTOPY STABLE CLASSES

Pub Date : 2021-09-02 DOI:10.1017/S1446788722000167
Anthony Conway, D. Crowley, Mark Powell, Joerg Sixt
{"title":"SIMPLY CONNECTED MANIFOLDS WITH LARGE HOMOTOPY STABLE CLASSES","authors":"Anthony Conway, D. Crowley, Mark Powell, Joerg Sixt","doi":"10.1017/S1446788722000167","DOIUrl":null,"url":null,"abstract":"Abstract For every \n$k \\geq 2$\n and \n$n \\geq 2$\n , we construct n pairwise homotopically inequivalent simply connected, closed \n$4k$\n -dimensional manifolds, all of which are stably diffeomorphic to one another. Each of these manifolds has hyperbolic intersection form and is stably parallelisable. In dimension four, we exhibit an analogous phenomenon for spin \n$^{c}$\n structures on \n$S^2 \\times S^2$\n . For \n$m\\geq 1$\n , we also provide similar \n$(4m-1)$\n -connected \n$8m$\n -dimensional examples, where the number of homotopy types in a stable diffeomorphism class is related to the order of the image of the stable J-homomorphism \n$\\pi _{4m-1}(SO) \\to \\pi ^s_{4m-1}$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract For every $k \geq 2$ and $n \geq 2$ , we construct n pairwise homotopically inequivalent simply connected, closed $4k$ -dimensional manifolds, all of which are stably diffeomorphic to one another. Each of these manifolds has hyperbolic intersection form and is stably parallelisable. In dimension four, we exhibit an analogous phenomenon for spin $^{c}$ structures on $S^2 \times S^2$ . For $m\geq 1$ , we also provide similar $(4m-1)$ -connected $8m$ -dimensional examples, where the number of homotopy types in a stable diffeomorphism class is related to the order of the image of the stable J-homomorphism $\pi _{4m-1}(SO) \to \pi ^s_{4m-1}$ .
分享
查看原文
具有大同伦稳定类的单连通流形
摘要对于每一个$k \geq 2$和$n \geq 2$,我们构造了n个彼此稳定微分同构的对同伦不等价单连通闭$4k$维流形。这些流形均具有双曲交形式,且稳定平行。在四维中,我们展示了$S^2 \times S^2$上的自旋$^{c}$结构的类似现象。对于$m\geq 1$,我们也提供了类似的$(4m-1)$连通$8m$维的例子,其中稳定的微分同态类中的同伦类型的数目与稳定的j同态$\pi _{4m-1}(SO) \to \pi ^s_{4m-1}$的像的阶数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信