Towards a Digital Twin: Simulation and Residual Stress Analysis in Aerospace Composite Structures Assembly

Tim Lutz, X. Yue, J. Camelio
{"title":"Towards a Digital Twin: Simulation and Residual Stress Analysis in Aerospace Composite Structures Assembly","authors":"Tim Lutz, X. Yue, J. Camelio","doi":"10.1115/msec2022-85439","DOIUrl":null,"url":null,"abstract":"\n Aerospace composites assemblies/joining demand ultra-high precision due to critical safety requirements, which necessitate adherence to indicators of risk that are often difficult to quantify. This study examines one important indicator, the residual stress that arises as a result of dimensional mismatch between mating components during the composite structures assembly process. Conventional simulations of large components assemblies investigated the process at a local or global scale, but lacked detailed exploitation of multi-layer stress analysis at integrated scale for composite structures. We develop a novel digital twin simulation for joining large composite structures with mechanical fasteners. The digital twin simulation integrates global features and local features for detailed investigation of stresses. We perform a statistical analysis to better understand the numerical properties of residual stresses after the fastening. Goodness-of-Fit tests and normality tests are used to explore the probabilistic distributions of the stresses exceeding a chosen safety threshold. The case study is conducted based on composite fuselage joining. The results show the stresses in composite structures assembly follow extreme value distributions (such as Weibull, Gumbel) rather than the widely used Gaussian distribution. The stresses in joined composite structures differ across layers, which can be attributed to the anisotropic material behavior.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aerospace composites assemblies/joining demand ultra-high precision due to critical safety requirements, which necessitate adherence to indicators of risk that are often difficult to quantify. This study examines one important indicator, the residual stress that arises as a result of dimensional mismatch between mating components during the composite structures assembly process. Conventional simulations of large components assemblies investigated the process at a local or global scale, but lacked detailed exploitation of multi-layer stress analysis at integrated scale for composite structures. We develop a novel digital twin simulation for joining large composite structures with mechanical fasteners. The digital twin simulation integrates global features and local features for detailed investigation of stresses. We perform a statistical analysis to better understand the numerical properties of residual stresses after the fastening. Goodness-of-Fit tests and normality tests are used to explore the probabilistic distributions of the stresses exceeding a chosen safety threshold. The case study is conducted based on composite fuselage joining. The results show the stresses in composite structures assembly follow extreme value distributions (such as Weibull, Gumbel) rather than the widely used Gaussian distribution. The stresses in joined composite structures differ across layers, which can be attributed to the anisotropic material behavior.
迈向数字孪生:航空复合材料结构装配仿真与残余应力分析
由于关键的安全要求,航空航天复合材料组件/连接需要超高精度,这就需要遵守通常难以量化的风险指标。本研究考察了复合材料结构装配过程中由于配合部件尺寸不匹配而产生的残余应力这一重要指标。传统的大型部件装配模拟研究的是局部或全局尺度的过程,但缺乏对复合材料结构的综合尺度的多层应力分析的详细开发。我们开发了一种新的数字孪生模拟,用于连接大型复合材料结构与机械紧固件。数字孪生仿真集成了全局特征和局部特征,用于详细研究应力。为了更好地理解紧固后残余应力的数值特性,我们进行了统计分析。拟合优度检验和正态性检验用于探索超过选定安全阈值的应力的概率分布。以复合材料机身连接为例进行了实例研究。结果表明,复合材料结构装配过程中的应力服从极值分布(如Weibull、Gumbel),而不是普遍使用的高斯分布。在连接复合材料结构中,应力在不同层之间存在差异,这可归因于材料的各向异性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信