Fermi’s favorite figure: the history of the pseudopotential concept in atomic physics and neutron physics

IF 0.8 4区 物理与天体物理 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Christopher R. Gould, Eduard I. Sharapov
{"title":"Fermi’s favorite figure: the history of the pseudopotential concept in atomic physics and neutron physics","authors":"Christopher R. Gould,&nbsp;Eduard I. Sharapov","doi":"10.1140/epjh/s13129-022-00042-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the early 1930’s, Fermi wrote two papers in which he introduced the concepts of “scattering length” and “pseudopotential.” Since that time, these terms have become universally associated with low energy scattering phenomena. Even though the two papers are very different—one in atomic physics, the other in neutron physics—a simple figure underlies both. The figure appears many times in Fermi’s work. We review how the two papers came about and briefly discuss modern developments of the work that Fermi initiated with these two remarkable papers.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"47 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjh/s13129-022-00042-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-022-00042-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the early 1930’s, Fermi wrote two papers in which he introduced the concepts of “scattering length” and “pseudopotential.” Since that time, these terms have become universally associated with low energy scattering phenomena. Even though the two papers are very different—one in atomic physics, the other in neutron physics—a simple figure underlies both. The figure appears many times in Fermi’s work. We review how the two papers came about and briefly discuss modern developments of the work that Fermi initiated with these two remarkable papers.

Abstract Image

费米最喜欢的人物:原子物理学和中子物理学中赝势概念的历史
在20世纪30年代早期,费米写了两篇论文,介绍了“散射长度”和“伪势”的概念。从那时起,这些术语就普遍与低能散射现象联系在一起。尽管这两篇论文非常不同——一篇是关于原子物理的,另一篇是关于中子物理的——但一个简单的数字奠定了两者的基础。这个数字在费米的作品中出现了很多次。我们回顾了这两篇论文是如何产生的,并简要讨论了费米用这两篇杰出的论文发起的工作的现代发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal H
The European Physical Journal H HISTORY & PHILOSOPHY OF SCIENCE-PHYSICS, MULTIDISCIPLINARY
CiteScore
1.60
自引率
10.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works. The scope explicitly includes: - Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics. - Annotated and/or contextual translations of relevant foreign-language texts. - Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信