An overview on microbial α-amylase and recent biotechnological developments

Rajendra Singh, S. Kim, Anila Kumari, P. Mehta
{"title":"An overview on microbial α-amylase and recent biotechnological developments","authors":"Rajendra Singh, S. Kim, Anila Kumari, P. Mehta","doi":"10.2174/2211550111666220328141044","DOIUrl":null,"url":null,"abstract":"\n\nThe α-amylase is one of the most promising commercial enzymes that has tremendous applications in various industries. Microbial α-amylase share almost 25-30% in enzymes market due to its catalytic function in several industries, including sugar, detergent, paper, textile, pharmaceutical industries, etc. The α-amylase hydrolyze glycosidic linkages of structural components of starch result in maltose, glucose, and high fructose syrups. Starch, the second most abundant organic substance on the Earth, is a readily available, low-cost renewable substrate mainly in biorefinery and food industries. Amylases are ubiquitous in nature due to its involvement in carbohydrate metabolism. The α-amylases of microbial origin have technical advantage as compared to animal and plant origin. Considering physicochemical properties, bacterial α-amylases are most diverse. However, for industrial purpose, these properties of the biocatalyst, either individually or in a combination, are required to modify through genetic and protein engineering according to the targeted process. The review presents an overview on the current findings of microbial sourced α-amylases, commercial applications, market trends on relevant industries and achieved improvements in thermostability, catalytic function, pH tolerance, Substrate and product specificities through recombinant DNA technology and protein engineering.\n","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biotechnology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2174/2211550111666220328141044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The α-amylase is one of the most promising commercial enzymes that has tremendous applications in various industries. Microbial α-amylase share almost 25-30% in enzymes market due to its catalytic function in several industries, including sugar, detergent, paper, textile, pharmaceutical industries, etc. The α-amylase hydrolyze glycosidic linkages of structural components of starch result in maltose, glucose, and high fructose syrups. Starch, the second most abundant organic substance on the Earth, is a readily available, low-cost renewable substrate mainly in biorefinery and food industries. Amylases are ubiquitous in nature due to its involvement in carbohydrate metabolism. The α-amylases of microbial origin have technical advantage as compared to animal and plant origin. Considering physicochemical properties, bacterial α-amylases are most diverse. However, for industrial purpose, these properties of the biocatalyst, either individually or in a combination, are required to modify through genetic and protein engineering according to the targeted process. The review presents an overview on the current findings of microbial sourced α-amylases, commercial applications, market trends on relevant industries and achieved improvements in thermostability, catalytic function, pH tolerance, Substrate and product specificities through recombinant DNA technology and protein engineering.
微生物α-淀粉酶研究进展及生物技术进展
α-淀粉酶是一种具有广泛应用前景的工业酶。微生物α-淀粉酶在制糖、洗涤剂、造纸、纺织、制药等行业具有催化作用,在酶类市场中占有近25-30%的份额。α-淀粉酶水解淀粉结构组分的糖苷键,生成麦芽糖、葡萄糖和高果糖糖浆。淀粉是地球上第二丰富的有机物质,是一种容易获得的低成本可再生基质,主要用于生物炼制和食品工业。淀粉酶因其参与碳水化合物代谢而在自然界中无处不在。微生物源α-淀粉酶相对于动植物源α-淀粉酶具有技术优势。考虑到理化性质,细菌α-淀粉酶是最多样化的。然而,对于工业用途,生物催化剂的这些特性,无论是单独的还是组合的,都需要根据目标过程通过基因和蛋白质工程进行修饰。本文综述了微生物源α-淀粉酶的研究现状、商业应用、相关行业的市场趋势,以及通过重组DNA技术和蛋白质工程技术在热稳定性、催化功能、pH耐受性、底物和产品特异性等方面取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信