A parallel iterative solver based on the Schur complement system

G. Larrazábal, J. Cela
{"title":"A parallel iterative solver based on the Schur complement system","authors":"G. Larrazábal, J. Cela","doi":"10.1109/ICPPW.2001.951921","DOIUrl":null,"url":null,"abstract":"We present a parallel iterative solver for the Schur system. We have developed two preconditioners for this system. The preconditioners are based in a strongly dropped factorisation and algebraic multigrid technique, respectively. Two levels of parallelism are exploited using PVM and openMP. The preconditioners are tested with a scalar convection-diffusion equation, a set of industrial test cases arising from the finite element package PERMAS and the Davis collection. We have obtained quasi-linear speed-up until 32 processors.","PeriodicalId":93355,"journal":{"name":"Proceedings of the ... ICPP Workshops on. International Conference on Parallel Processing Workshops","volume":"15 1","pages":"149-154"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ICPP Workshops on. International Conference on Parallel Processing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPPW.2001.951921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a parallel iterative solver for the Schur system. We have developed two preconditioners for this system. The preconditioners are based in a strongly dropped factorisation and algebraic multigrid technique, respectively. Two levels of parallelism are exploited using PVM and openMP. The preconditioners are tested with a scalar convection-diffusion equation, a set of industrial test cases arising from the finite element package PERMAS and the Davis collection. We have obtained quasi-linear speed-up until 32 processors.
基于Schur补系统的并行迭代求解器
提出了Schur系统的并行迭代求解方法。我们为这个系统开发了两个预调节器。预调节器分别基于强降因子分解和代数多重网格技术。使用PVM和openMP利用了两个级别的并行性。采用一个标量对流扩散方程、一组由有限元软件包PERMAS和Davis集合产生的工业测试用例对预调节器进行了测试。我们得到了准线性加速,直到32个处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信