{"title":"IMPROVEMENT OF DISSOLUTION RATE OF REPAGLINIDE BY UTILIZING SOLID DISPERSION TECHNIQUE","authors":"Mahendra Patel, A. Indurkhya, M. Khan","doi":"10.24092/crps.2023.130107","DOIUrl":null,"url":null,"abstract":"The recent study's objective was to prepare and evaluate the Repaglinide (RG) solid dispersion. RG is poorly water soluble, BCS class II drug. Repaglinide solid dispersion (RG-SD) was prepared by solvent evaporation method using different proportion of PVP K30. The prepared RG-SD was evaluated for solubility studies, drug content, in vitro dissolution, DSC studies and XRD studies. DSC and XRD studies results indicate that RG exists in amorphous form in solid dispersion. The solubility of pure RG was enhanced from 34.41±0.68 to 370.3±1.52 μg/mL in distilled water at 370 C. RG-SD (RG:PVP K30) (1:10) showed high burst release (65%) in the first 30 min. Current research concludes that Repaglinide solid dispersions using PVP-K30 (1:10) as a carrier in solid dispersions showed promising results in enhancement of repaglinide properties. KEYWORDS: Repaglinide, Solid Dispersion, PVK K30, Dissolution Rate, Solvent evaporation","PeriodicalId":11053,"journal":{"name":"Current Research in Pharmaceutical Sciences","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24092/crps.2023.130107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The recent study's objective was to prepare and evaluate the Repaglinide (RG) solid dispersion. RG is poorly water soluble, BCS class II drug. Repaglinide solid dispersion (RG-SD) was prepared by solvent evaporation method using different proportion of PVP K30. The prepared RG-SD was evaluated for solubility studies, drug content, in vitro dissolution, DSC studies and XRD studies. DSC and XRD studies results indicate that RG exists in amorphous form in solid dispersion. The solubility of pure RG was enhanced from 34.41±0.68 to 370.3±1.52 μg/mL in distilled water at 370 C. RG-SD (RG:PVP K30) (1:10) showed high burst release (65%) in the first 30 min. Current research concludes that Repaglinide solid dispersions using PVP-K30 (1:10) as a carrier in solid dispersions showed promising results in enhancement of repaglinide properties. KEYWORDS: Repaglinide, Solid Dispersion, PVK K30, Dissolution Rate, Solvent evaporation