Optimization of wood machining parameters using artificial neural network in CNC router

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Cakmak, A. Malkocoglu, S. Ozsahin
{"title":"Optimization of wood machining parameters using artificial neural network in CNC router","authors":"A. Cakmak, A. Malkocoglu, S. Ozsahin","doi":"10.1080/02670836.2023.2180901","DOIUrl":null,"url":null,"abstract":"This study aims to determine the optimal CNC (Computer Numerical Control) machining conditions using an artificial neural network. For this purpose, Fagus orientalis, Castanea sativa, Pinus sylvestris, and Picea orientalis wood samples at 8%, 12%, and 15% moisture content (MC) were machined on a CNC router in both across and along the grain directions. Based on the experimental data of surface roughness and cutting power analyses, a total of 16 models were used. These were selected in hundreds of models that have the lowest error. The spindle speed, feed rate, and the number of cutter teeth were chosen to be different with the literature based on the length of cutter mark. As a result, optimum machining parameters were determined for each wood MC.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"91 1","pages":"1728 - 1744"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2180901","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

This study aims to determine the optimal CNC (Computer Numerical Control) machining conditions using an artificial neural network. For this purpose, Fagus orientalis, Castanea sativa, Pinus sylvestris, and Picea orientalis wood samples at 8%, 12%, and 15% moisture content (MC) were machined on a CNC router in both across and along the grain directions. Based on the experimental data of surface roughness and cutting power analyses, a total of 16 models were used. These were selected in hundreds of models that have the lowest error. The spindle speed, feed rate, and the number of cutter teeth were chosen to be different with the literature based on the length of cutter mark. As a result, optimum machining parameters were determined for each wood MC.
基于人工神经网络的数控铣床木材加工参数优化
本研究旨在利用人工神经网络确定最佳CNC(计算机数控)加工条件。为此,在CNC数控铣床上对8%、12%和15%含水率(MC)的东方柴(Fagus orientalis)、蓖麻(Castanea sativa)、西洋松(Pinus sylvestris)和东方云杉(Picea orientalis)木材样品进行了横向和纵向的加工。基于表面粗糙度实验数据和切削功率分析,共使用了16种模型。这些都是从几百个误差最小的模型中挑选出来的。根据刀痕的长度选择不同的主轴转速、进给速度和刀齿数。最终确定了每种木材MC的最佳加工参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信