{"title":"Optimization of wood machining parameters using artificial neural network in CNC router","authors":"A. Cakmak, A. Malkocoglu, S. Ozsahin","doi":"10.1080/02670836.2023.2180901","DOIUrl":null,"url":null,"abstract":"This study aims to determine the optimal CNC (Computer Numerical Control) machining conditions using an artificial neural network. For this purpose, Fagus orientalis, Castanea sativa, Pinus sylvestris, and Picea orientalis wood samples at 8%, 12%, and 15% moisture content (MC) were machined on a CNC router in both across and along the grain directions. Based on the experimental data of surface roughness and cutting power analyses, a total of 16 models were used. These were selected in hundreds of models that have the lowest error. The spindle speed, feed rate, and the number of cutter teeth were chosen to be different with the literature based on the length of cutter mark. As a result, optimum machining parameters were determined for each wood MC.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"91 1","pages":"1728 - 1744"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2180901","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
This study aims to determine the optimal CNC (Computer Numerical Control) machining conditions using an artificial neural network. For this purpose, Fagus orientalis, Castanea sativa, Pinus sylvestris, and Picea orientalis wood samples at 8%, 12%, and 15% moisture content (MC) were machined on a CNC router in both across and along the grain directions. Based on the experimental data of surface roughness and cutting power analyses, a total of 16 models were used. These were selected in hundreds of models that have the lowest error. The spindle speed, feed rate, and the number of cutter teeth were chosen to be different with the literature based on the length of cutter mark. As a result, optimum machining parameters were determined for each wood MC.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.